684.冗余连接

目标

树可以看成是一个连通且 无环 的 无向 图。

给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] = [ai, bi] 表示图中在 ai 和 bi 之间存在一条边。

请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的那个。

示例 1:

输入: edges = [[1,2], [1,3], [2,3]]
输出: [2,3]

示例 2:

输入: edges = [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]

说明:

  • n == edges.length
  • 3 <= n <= 1000
  • edges[i].length == 2
  • 1 <= ai < bi <= edges.length
  • ai != bi
  • edges 中无重复元素
  • 给定的图是连通的

思路

有一颗 n 个节点的树,节点编号 1 ~ n。使用 edges 表示向树中两个没有直接连接的节点之间加一条边之后的边的集合,找出一条可以删除的边使得 edges 变为一颗有 n 个节点的树。如果有多种选择,返回 edges 中最后出现的那个,即下标最大的边。

我们可以选择一个根节点,比如从节点 1 出发,使用回溯记录已经访问过的节点,如果发现回到已访问过的非父节点说明出现了环。如果只是寻找环的上的任一条边的话,直接返回即可。

麻烦点在于题目要求返回 edges 中最后出现的边,因此我们需要记录访问的路径,从环开始的节点往后的节点都是在环上的。最后从后向前遍历 edges 找到第一个两端点都在环上的边。

官网题解使用的是并查集。// todo

代码


/**
 * @date 2024-10-27 16:34
 */
public class FindRedundantConnection684 {
    List<Integer>[] g;
    Set<Integer> loop;
    List<Integer> path;
    int start;

    public int[] findRedundantConnection(int[][] edges) {
        int n = edges.length;
        g = new List[n + 1];
        for (int i = 0; i <= n; i++) {
            g[i] = new ArrayList<>();
        }
        for (int[] edge : edges) {
            g[edge[0]].add(edge[1]);
            g[edge[1]].add(edge[0]);
        }
        loop = new HashSet<>(n);
        path = new ArrayList<>();
        dfs(0, 1);
        loop = new HashSet<>();
        for (int i = path.size() - 1; i >= 0; i--) {
            loop.add(path.get(i));
            if (start == path.get(i)) {
                break;
            }
        }
        for (int i = n - 1; i >= 0; i--) {
            if (loop.contains(edges[i][0]) && loop.contains(edges[i][1])) {
                return edges[i];
            }
        }
        return null;
    }

    private boolean dfs(int parent, int current) {
        for (Integer next : g[current]) {
            if (next == parent) {
                continue;
            }
            if (loop.contains(next)) {
                start = next;
                return true;
            } else {
                loop.add(next);
                path.add(next);
                if (dfs(current, next)) {
                    return true;
                }
                path.remove(path.size() - 1);
                loop.remove(next);
            }
        }
        return false;
    }

}

性能

3181.执行操作可获得的最大总奖励II

目标

给你一个整数数组 rewardValues,长度为 n,代表奖励的值。

最初,你的总奖励 x 为 0,所有下标都是 未标记 的。你可以执行以下操作 任意次 :

  • 从区间 [0, n - 1] 中选择一个 未标记 的下标 i。
  • 如果 rewardValues[i] 大于 你当前的总奖励 x,则将 rewardValues[i] 加到 x 上(即 x = x + rewardValues[i]),并 标记 下标 i。

以整数形式返回执行最优操作能够获得的 最大 总奖励。

示例 1:

输入:rewardValues = [1,1,3,3]
输出:4
解释:
依次标记下标 0 和 2,总奖励为 4,这是可获得的最大值。

示例 2:

输入:rewardValues = [1,6,4,3,2]
输出:11
解释:
依次标记下标 0、2 和 1。总奖励为 11,这是可获得的最大值。

说明:

  • 1 <= rewardValues.length <= 5 * 10^4
  • 1 <= rewardValues[i] <= 5 * 10^4

思路

与昨天的题相比,数据范围变大了。

// todo

代码

性能

3180.执行操作可获得的最大总奖励I

目标

给你一个整数数组 rewardValues,长度为 n,代表奖励的值。

最初,你的总奖励 x 为 0,所有下标都是 未标记 的。你可以执行以下操作 任意次 :

  • 从区间 [0, n - 1] 中选择一个 未标记 的下标 i。
  • 如果 rewardValues[i] 大于 你当前的总奖励 x,则将 rewardValues[i] 加到 x 上(即 x = x + rewardValues[i]),并 标记 下标 i。

以整数形式返回执行最优操作能够获得的 最大 总奖励。

示例 1:

输入:rewardValues = [1,1,3,3]
输出:4
解释:
依次标记下标 0 和 2,总奖励为 4,这是可获得的最大值。

示例 2:

输入:rewardValues = [1,6,4,3,2]
输出:11
解释:
依次标记下标 0、2 和 1。总奖励为 11,这是可获得的最大值。

说明:

  • 1 <= rewardValues.length <= 2000
  • 1 <= rewardValues[i] <= 2000

思路

有一个长度为 n 的整数数组 rewardValues 和一个变量 x 初始为 0,可以执行任意次操作,每次操作可以从 [0, n - 1] 中选一个未标记的下标 i,如果 rewardValues[i] > xx += rewardValues[i],并标记 i。求 x 的最大值。

// todo

代码

性能

3175.找到连续赢K场比赛的第一位玩家

目标

有 n 位玩家在进行比赛,玩家编号依次为 0 到 n - 1 。

给你一个长度为 n 的整数数组 skills 和一个 整数 k ,其中 skills[i] 是第 i 位玩家的技能等级。skills 中所有整数 互不相同 。

所有玩家从编号 0 到 n - 1 排成一列。

比赛进行方式如下:

  • 队列中最前面两名玩家进行一场比赛,技能等级 更高 的玩家胜出。
  • 比赛后,获胜者保持在队列的开头,而失败者排到队列的末尾。

这个比赛的赢家是 第一位连续 赢下 k 场比赛的玩家。

请你返回这个比赛的赢家编号。

示例 1:

输入:skills = [4,2,6,3,9], k = 2
输出:2
解释:
一开始,队列里的玩家为 [0,1,2,3,4] 。比赛过程如下:
玩家 0 和 1 进行一场比赛,玩家 0 的技能等级高于玩家 1 ,玩家 0 胜出,队列变为 [0,2,3,4,1] 。
玩家 0 和 2 进行一场比赛,玩家 2 的技能等级高于玩家 0 ,玩家 2 胜出,队列变为 [2,3,4,1,0] 。
玩家 2 和 3 进行一场比赛,玩家 2 的技能等级高于玩家 3 ,玩家 2 胜出,队列变为 [2,4,1,0,3] 。
玩家 2 连续赢了 k = 2 场比赛,所以赢家是玩家 2 。

示例 2:

输入:skills = [2,5,4], k = 3
输出:1
解释:
一开始,队列里的玩家为 [0,1,2] 。比赛过程如下:
玩家 0 和 1 进行一场比赛,玩家 1 的技能等级高于玩家 0 ,玩家 1 胜出,队列变为 [1,2,0] 。
玩家 1 和 2 进行一场比赛,玩家 1 的技能等级高于玩家 2 ,玩家 1 胜出,队列变为 [1,0,2] 。
玩家 1 和 0 进行一场比赛,玩家 1 的技能等级高于玩家 0 ,玩家 1 胜出,队列变为 [1,2,0] 。
玩家 1 连续赢了 k = 3 场比赛,所以赢家是玩家 1 。

说明:

  • n == skills.length
  • 2 <= n <= 10^5
  • 1 <= k <= 10^9
  • 1 <= skills[i] <= 10^6
  • skills 中的整数互不相同。

思路

n 个玩家排成一队并从 0n - 1 编号,有一个元素互不相同的 skills 数组,skills[i] 代表玩家 i 的技能等级,队首的两位玩家进行比赛,技能等级高的胜出,输的排队尾,胜出的玩家接着与队首的玩家比赛,如此循环,问连续赢得 k 场比赛的玩家编号。

由于技能等级互不相同,一定有解,直接按题意模拟即可。但是考虑到 k 最大为 10^9,如果真循环模拟比赛 k 次也会超时。其实只要开始没有出现连胜 k 次的玩家,最后的胜者一定是技能等级最高的,那么后续的比赛一定全胜,直接返回即可。

代码


/**
 * @date 2024-10-24 0:41
 */
public class FindWinningPlayer3175 {

    public int findWinningPlayer(int[] skills, int k) {
        int n = skills.length;
        int cnt = 0;
        int res = 0;
        for (int i = 1; i < n; i++) {
            if (cnt == k) {
                return res;
            }
            if (skills[res] > skills[i]) {
                cnt++;
            } else {
                cnt = 1;
                res = i;
            }
        }
        return res;
    }

}

性能

3175.找到连续赢K场比赛的第一位玩家

目标

有 n 位玩家在进行比赛,玩家编号依次为 0 到 n - 1 。

给你一个长度为 n 的整数数组 skills 和一个 整数 k ,其中 skills[i] 是第 i 位玩家的技能等级。skills 中所有整数 互不相同 。

所有玩家从编号 0 到 n - 1 排成一列。

比赛进行方式如下:

  • 队列中最前面两名玩家进行一场比赛,技能等级 更高 的玩家胜出。
  • 比赛后,获胜者保持在队列的开头,而失败者排到队列的末尾。

这个比赛的赢家是 第一位连续 赢下 k 场比赛的玩家。

请你返回这个比赛的赢家编号。

示例 1:

输入:skills = [4,2,6,3,9], k = 2
输出:2
解释:
一开始,队列里的玩家为 [0,1,2,3,4] 。比赛过程如下:
玩家 0 和 1 进行一场比赛,玩家 0 的技能等级高于玩家 1 ,玩家 0 胜出,队列变为 [0,2,3,4,1] 。
玩家 0 和 2 进行一场比赛,玩家 2 的技能等级高于玩家 0 ,玩家 2 胜出,队列变为 [2,3,4,1,0] 。
玩家 2 和 3 进行一场比赛,玩家 2 的技能等级高于玩家 3 ,玩家 2 胜出,队列变为 [2,4,1,0,3] 。
玩家 2 连续赢了 k = 2 场比赛,所以赢家是玩家 2 。

示例 2:

输入:skills = [2,5,4], k = 3
输出:1
解释:
一开始,队列里的玩家为 [0,1,2] 。比赛过程如下:
玩家 0 和 1 进行一场比赛,玩家 1 的技能等级高于玩家 0 ,玩家 1 胜出,队列变为 [1,2,0] 。
玩家 1 和 2 进行一场比赛,玩家 1 的技能等级高于玩家 2 ,玩家 1 胜出,队列变为 [1,0,2] 。
玩家 1 和 0 进行一场比赛,玩家 1 的技能等级高于玩家 0 ,玩家 1 胜出,队列变为 [1,2,0] 。
玩家 1 连续赢了 k = 3 场比赛,所以赢家是玩家 1 。

说明:

  • n == skills.length
  • 2 <= n <= 10^5
  • 1 <= k <= 10^9
  • 1 <= skills[i] <= 10^6
  • skills 中的整数互不相同。

思路

n 个玩家排成一队并从 0n - 1 编号,有一个元素互不相同的 skills 数组,skills[i] 代表玩家 i 的技能等级,队首的两位玩家进行比赛,技能等级高的胜出,输的排队尾,胜出的玩家接着与队首的玩家比赛,如此循环,问连续赢得 k 场比赛的玩家编号。

由于技能等级互不相同,一定有解,直接按题意模拟即可。但是考虑到 k 最大为 10^9,如果真循环模拟比赛 k 次也会超时。其实只要开始没有出现连胜 k 次的玩家,最后的胜者一定是技能等级最高的,那么后续的比赛一定全胜,直接返回即可。

代码


/**
 * @date 2024-10-24 0:41
 */
public class FindWinningPlayer3175 {

    public int findWinningPlayer(int[] skills, int k) {
        int n = skills.length;
        int cnt = 0;
        int res = 0;
        for (int i = 1; i < n; i++) {
            if (cnt == k) {
                return res;
            }
            if (skills[res] > skills[i]) {
                cnt++;
            } else {
                cnt = 1;
                res = i;
            }
        }
        return res;
    }

}

性能

3185.构成整天的下标对数目II

目标

给你一个整数数组 hours,表示以 小时 为单位的时间,返回一个整数,表示满足 i < j 且 hours[i] + hours[j] 构成 整天 的下标对 i, j 的数目。

整天 定义为时间持续时间是 24 小时的 整数倍 。

例如,1 天是 24 小时,2 天是 48 小时,3 天是 72 小时,以此类推。

示例 1:

输入: hours = [12,12,30,24,24]
输出: 2
解释:
构成整天的下标对分别是 (0, 1) 和 (3, 4)。

示例 2:

输入: hours = [72,48,24,3]
输出: 3
解释:
构成整天的下标对分别是 (0, 1)、(0, 2) 和 (1, 2)。

说明:

  • 1 <= hours.length <= 5 * 10^5
  • 1 <= hours[i] <= 10^9

思路

有一个整数数组 hours,返回 hours[i] + hours[j] % 24 == 0i < j 的下标对的个数。

与昨天的题目 3184.构成整天的下标对数目I 相比,数据规模从 100 变成了 5 * 10^5。枚举下标对的时间复杂度为 O(C(n,2)),即 O(n^2),肯定会超时。

题目并不要求输出具体的下标对,只需要计数即可。当枚举右端点时,如果可以直接获取到已访问过的元素中,能够与当前元素组成合法下标对的元素个数,那么整体的时间复杂度可以降为 O(n)。定义 cnt[m] 表示已访问过的元素中对 24 取余后值为 m 的元素个数。当枚举到元素 i 时,只需累加 cnt[24 - nums[i] % 24] 即可。

代码


/**
 * @date 2024-10-23 10:16
 */
public class CountCompleteDayPairs3185 {

    public long countCompleteDayPairs_v2(int[] hours) {
        long res = 0L;
        int[] cnt = new int[24];
        int zeroCnt = 0;
        for (int hour : hours) {
            int m = hour % 24;
            if (m == 0) {
                res += zeroCnt;
                zeroCnt++;
            } else {
                res += cnt[24 - m];
                cnt[m]++;
            }
        }
        return res;
    }

}

性能

3184.构成整天的下标对数目I

目标

给你一个整数数组 hours,表示以 小时 为单位的时间,返回一个整数,表示满足 i < j 且 hours[i] + hours[j] 构成 整天 的下标对 i, j 的数目。

整天 定义为时间持续时间是 24 小时的 整数倍 。

例如,1 天是 24 小时,2 天是 48 小时,3 天是 72 小时,以此类推。

示例 1:

输入: hours = [12,12,30,24,24]
输出: 2
解释:
构成整天的下标对分别是 (0, 1) 和 (3, 4)。

示例 2:

输入: hours = [72,48,24,3]
输出: 3
解释:
构成整天的下标对分别是 (0, 1)、(0, 2) 和 (1, 2)。

说明:

  • 1 <= hours.length <= 100
  • 1 <= hours[i] <= 10^9

思路

有一个整数数组 hours,返回 hours[i] + hours[j] % 24 == 0i < j 的下标对的个数。

n 个元素中枚举两个元素可能组合的时间复杂度为 O(C(n,2)),即 O(n^2),数据规模不大,直接依题意枚举判断并计数即可。

代码


/**
 * @date 2024-10-22 8:46
 */
public class CountCompleteDayPairs3184 {

    public int countCompleteDayPairs(int[] hours) {
        int n = hours.length;
        int res = 0;
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                if ((hours[i] + hours[j]) % 24 == 0) {
                    res++;
                }
            }
        }
        return res;
    }

}

性能

910.最小差值II

目标

给你一个整数数组 nums,和一个整数 k 。

对于每个下标 i(0 <= i < nums.length),将 nums[i] 变成 nums[i] + k 或 nums[i] - k 。

nums 的 分数 是 nums 中最大元素和最小元素的差值。

在更改每个下标对应的值之后,返回 nums 的最小 分数 。

示例 1:

输入:nums = [1], k = 0
输出:0
解释:分数 = max(nums) - min(nums) = 1 - 1 = 0 。

示例 2:

输入:nums = [0,10], k = 2
输出:6
解释:将数组变为 [2, 8] 。分数 = max(nums) - min(nums) = 8 - 2 = 6 。

示例 3:

输入:nums = [1,3,6], k = 3
输出:3
解释:将数组变为 [4, 6, 3] 。分数 = max(nums) - min(nums) = 6 - 3 = 3 。

说明:

  • 1 <= nums.length <= 10^4
  • 0 <= nums[i] <= 10^4
  • 0 <= k <= 10^4

思路

这道题与 908.最小差值I 的区别是对于每个元素操作是 必选的,增加或减少的值 固定k 而不是区间 [-k, k]

每个元素都可以取 nums[i] + knums[i] - k,如果枚举所有可能的数组,然后再取最大最小值差的最小值显然是不可能的。不考虑重复元素的情况下,可能的数组有 2^n 种。

可以先排序,增大小的值,减少大的值,枚举二者的边界,比如前 i 个元素 [0, i - 1]k,剩余元素减 k,这时上界为 Math.max(nums[i - 1] + k, nums[n - 1] - k) ,下界为 Math.min(nums[0] + k, nums[i] - k),取上下界的最小值即可。

代码


/**
 * @date 2024-10-21 9:57
 */
public class SmallestRangeII910 {

    public int smallestRangeII(int[] nums, int k) {
        Arrays.sort(nums);
        int n = nums.length;
        int res = nums[n - 1] - nums[0];
        for (int i = 1; i < n; i++) {
            int max = Math.max(nums[i - 1] + k, nums[n - 1] - k);
            int min = Math.min(nums[0] + k, nums[i] - k);
            res = Math.min(res, max - min);
        }
        return res;
    }

}

性能

908.最小差值I

目标

给你一个整数数组 nums,和一个整数 k 。

在一个操作中,您可以选择 0 <= i < nums.length 的任何索引 i 。将 nums[i] 改为 nums[i] + x ,其中 x 是一个范围为 [-k, k] 的任意整数。对于每个索引 i ,最多 只能 应用 一次 此操作。

nums 的 分数 是 nums 中最大和最小元素的差值。

在对 nums 中的每个索引最多应用一次上述操作后,返回 nums 的最低 分数 。

示例 1:

输入:nums = [1], k = 0
输出:0
解释:分数是 max(nums) - min(nums) = 1 - 1 = 0。

示例 2:

输入:nums = [0,10], k = 2
输出:6
解释:将 nums 改为 [2,8]。分数是 max(nums) - min(nums) = 8 - 2 = 6。

示例 3:

输入:nums = [1,3,6], k = 3
输出:0
解释:将 nums 改为 [4,4,4]。分数是 max(nums) - min(nums) = 4 - 4 = 0。

说明:

  • 1 <= nums.length <= 10^4
  • 0 <= nums[i] <= 10^4
  • 0 <= k <= 10^4

思路

有一个整数数组,可以对其中的每一个元素执行操作 加上 [-k, k] 范围内的任意整数。针对同一元素只能执行一次操作,求最大值与最小值差值的最小值。

先找出最大值 max 与最小值 min,返回 min + k >= max - k ? 0 : max - min - 2*k

代码


/**
 * @date 2024-10-20 16:36
 */
public class SmallestRangeI908 {

    public int smallestRangeI_v1(int[] nums, int k) {
        int min = Integer.MAX_VALUE;
        int max = 0;
        for (int num : nums) {
            if (num < min) {
                min = num;
            }
            if (num > max) {
                max = num;
            }
        }
        return Math.max(max - min - 2 * k, 0);
    }

}

性能

3192.使二进制数组全部等于1的最少操作次数II

目标

给你一个二进制数组 nums 。

你可以对数组执行以下操作 任意 次(也可以 0 次):

  • 选择数组中 任意 一个下标 i ,并将从下标 i 开始一直到数组末尾 所有 元素 反转 。

反转 一个元素指的是将它的值从 0 变 1 ,或者从 1 变 0 。

请你返回将 nums 中所有元素变为 1 的 最少 操作次数。

示例 1:

输入:nums = [0,1,1,0,1]
输出:4
解释:
我们可以执行以下操作:
选择下标 i = 1 执行操作,得到 nums = [0,0,0,1,0] 。
选择下标 i = 0 执行操作,得到 nums = [1,1,1,0,1] 。
选择下标 i = 4 执行操作,得到 nums = [1,1,1,0,0] 。
选择下标 i = 3 执行操作,得到 nums = [1,1,1,1,1] 。

示例 2:

输入:nums = [1,0,0,0]
输出:1
解释:
我们可以执行以下操作:
选择下标 i = 1 执行操作,得到 nums = [1,1,1,1] 。

说明:

  • 1 <= nums.length <= 10^5
  • 0 <= nums[i] <= 1

思路

有一个二进制数组 nums,每一次操作可以将当前元素以及之后的元素反转,问将所有元素变为 1 的最少操作次数。

这与昨天的题目 3191.使二进制数组全部等于1的最少操作次数I 类似,那个是将当前元素及后面两个元素反转。

还沿用昨天的思路,遇到 0 就进行操作,每一次操作需要对大量元素进行取模运算,因此考虑使用差分数组。这里差分数组初始均为 0,每次操作是针对当前元素及以后的所有元素,无需考虑后续的减法操作,因此只需要一个变量计数即可。

网友最快的算法并非使用变量计数然后判断奇偶性,考虑到最终目标是将所有元素都变为 1,每一次操作会将自身与其后的元素反转,对于初始数组任意位置 i,如果它为 0,该位置一定需要执行奇数次操作,因为执行偶数次反转最后还是 0。同理,如果为 1,需要执行 偶数 次操作。实际上每个位置是否需要执行操作是 确定的

只要有一个初始条件,向后遍历的时候直接根据前一个元素与当前元素的关系判断是否需要累加操作即可,具体来说,如果它们值相同则不需要操作,如果不同则需要操作,直接累加这两个元素的异或值即可。

代码


/**
 * @date 2024-10-19 17:30
 */
public class MinOperations3192 {

    public int minOperations_v2(int[] nums) {
        int n = nums.length;
        int prev = nums[0];
        int res = prev ^ 1;
        for (int i = 1; i < n; i++) {
            res += prev ^ nums[i];
            prev = nums[i];
        }
        return res;
    }

    public int minOperations_v1(int[] nums) {
        int n = nums.length;
        int res = 0;
        for (int i = 0; i < n; i++) {
            if (((res % 2 ^ nums[i]) == 0)) {
                res++;
            }
        }
        return res;
    }

}

性能