52.N皇后II

目标

n 皇后问题 研究的是如何将 n 个皇后放置在 n × n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回 n 皇后问题 不同的解决方案的数量。

示例 1:

输入:n = 4
输出:2
解释:如上图所示,4 皇后问题存在两个不同的解法。

示例 2:

输入:n = 1
输出:1

说明:

1 <= n <= 9

思路

将 n 个皇后放在 n x n 的棋盘上,使它们不在同一行、不在同一列并且不在同一斜线上。返回不同的解决方案数量。与 51_N皇后 相比,本题无需返回具体的布局。

关键点:

  • 每行只能放一个皇后,枚举当前行的每一列,如果存在合法的位置则进入下一行
  • 如何判断是否在一条斜线上,对于坐标 (i, j),(a, b),如果 i + j == a + b || i - j == a - b,那么它们在一条斜线上
  • 使用数组保存已经存在皇后的斜线,由于 i - j 可能出现负数,我们将其右移 n,使用 i - j + n,最大值为 n - 1 + n,数组初始化为 2 * n,i + j 最大值为 n - 1 + n - 1 初始化为 2 * n - 1
  • 从第 0 行开始,如果能够进入第 1 行,说明第 0 行存在皇后。同理如果能够进入第 2 行,说明前两行存在皇后,总共 2 个皇后。因此结束条件为 row == n

代码


/**
 * @date 2024-12-01 17:58
 */
public class TotalNQueens52 {

    public int res;
    public int n;
    public boolean[] colIndexSet;
    public boolean[] leftDiagonalSet;
    public boolean[] rightDiagonalSet;

    public int totalNQueens(int n) {
        this.n = n;
        colIndexSet = new boolean[n];
        leftDiagonalSet = new boolean[2 * n];
        rightDiagonalSet = new boolean[2 * n - 1];
        backTracing(0);
        return res;
    }

    public void backTracing(int row) {
        if (row == n) {
            res++;
            return;
        }
        for (int col = 0; col < n; col++) {
            if (colIndexSet[col] || leftDiagonalSet[row - col + n] || rightDiagonalSet[row + col]) {
                continue;
            }
            colIndexSet[col] = true;
            leftDiagonalSet[row - col + n] = true;
            rightDiagonalSet[row + col] = true;
            backTracing(row + 1);
            colIndexSet[col] = false;
            leftDiagonalSet[row - col + n] = false;
            rightDiagonalSet[row + col] = false;
        }
    }

}

性能

51.N皇后

目标

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例 1:

输入:n = 4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
解释:如上图所示,4 皇后问题存在两个不同的解法。

示例 2:

输入:n = 1
输出:[["Q"]]

说明:

  • 1 <= n <= 9

思路

将 n 个皇后放在 n x n 的棋盘上,使它们不在同一行、不在同一列并且不在同一斜线上。返回所有不同的解决方案,使用 Q 表示皇后,. 表示空位。

枚举棋盘的每个格子,当该格子放置皇后时,其所在行、列、斜线的格子都不能有皇后。使用回溯算法,如果格子遍历完皇后数量刚好为 n 个则计数。

假设 (i, j) 位置上放置了皇后,那么所有 (i, *) (*, j) 以及所有满足 a - b == i - j || i + j == a + b(a, b) 都不能再放置皇后。

使用整数的二进制位来表示列是否允许放置皇后,从左到右对应二进制的低位到高位:

  • 由于逻辑与、或没有逆运算,所以必须以参数的方式传递,否则无法恢复现场
  • 如果我们在第 0 行的第 i 列放置了皇后,那么第 1 行的第 i - 1, i, i + 1 列无法放置皇后,使用位运算的角度来看就是对 1 << i, 1 << (i + 1), 1 << (i - 1) 相与,即 1 << i, (1 << i) << 1, (1 << i) >> 1。令 c = 1 << i,再考虑当前行与前面行的限制,下一行 不能放置皇后的列为:colIndexSet | c,(leftDiagonalSet | c) << 1,(rightDiagonalSet | c) >> 1),其中 colIndexSet 的 bit 1 表示无法放置皇后的列;leftDiagonalSet 的 bit 1 表示受 斜线限制,无法放置皇后的列;rightDiagonalSet 的 bit 1 表示受 斜线限制,无法放置皇后的列;c 表示将当前行放置皇后的列对应的 bit 位 置 1 所代表的数字
  • valid = ((1 << n) - 1) & ~(colIndexSet | leftDiagonalSet | rightDiagonalSet) 表示合法的位置
  • c = valid & -valid 得到 bit 1 的最低位表示的数字
  • Integer.bitCount(c - 1) 表示列下标
  • valid ^= c 将当前处理过的最低位 bit 1 置 0

当然也可以使用数组来记录不可放置皇后的列信息,差别不大,见 52_N皇后II

代码


/**
 * @date 2024-12-01 16:45
 */
public class SolveNQueens51 {

    public static class SolveNQueens {
        public List<List<String>> res;
        public int n;
        public int[] queens;

        public List<List<String>> solveNQueens(int n) {
            this.n = n;
            queens = new int[n];
            res = new ArrayList<>();
            backTracing(0, 0, 0, 0);
            return res;
        }

        public void backTracing(int row, int colIndexSet, int leftDiagonalSet, int rightDiagonalSet) {
            if (row == n) {
                List<String> solution = new ArrayList<>(n);
                char[] chars = new char[n];
                Arrays.fill(chars, '.');
                for (int i = 0; i < n; i++) {
                    chars[queens[i]] = 'Q';
                    solution.add(new String(chars));
                    chars[queens[i]] = '.';
                }
                res.add(solution);
                return;
            }
            int valid = ((1 << n) - 1) & ~(colIndexSet | leftDiagonalSet | rightDiagonalSet);
            while (valid > 0){
                int c = valid & -valid;
                queens[row] = Integer.bitCount(c - 1);
                backTracing(row + 1, colIndexSet | c,
                        (leftDiagonalSet | c) << 1,
                        (rightDiagonalSet | c) >> 1);
                valid ^= c;
            }
        }

    }

    public List<List<String>> res;
    public Set<Integer> rowIndexSet;
    public Set<Integer> colIndexSet;
    public Set<Integer> leftDiagonalSet;
    public Set<Integer> rightDiagonalSet;
    public ArrayList<int[]> indexList;
    public int end;
    public int n;

    public List<List<String>> solveNQueens(int n) {
        res = new ArrayList<>(n);
        rowIndexSet = new HashSet<>(n);
        colIndexSet = new HashSet<>(n);
        leftDiagonalSet = new HashSet<>(n);
        rightDiagonalSet = new HashSet<>(n);
        indexList = new ArrayList<>(n);
        end = n * n;
        this.n = n;
        for (int i = 0; i < n; i++) {
            backTracing(i);
        }
        return res;
    }

    public void backTracing(int index) {
        int row = index / n;
        int col = index % n;
        int leftDiagonal = row - col;
        int rightDiagonal = row + col;
        rowIndexSet.add(row);
        colIndexSet.add(col);
        leftDiagonalSet.add(leftDiagonal);
        rightDiagonalSet.add(rightDiagonal);
        indexList.add(new int[]{row, col});
        if (indexList.size() == n) {
            StringBuilder sb = new StringBuilder();
            List<String> solution = new ArrayList<>(n);
            for (int[] cor : indexList) {
                for (int i = 0; i < n; i++) {
                    if (i == cor[1]) {
                        sb.append('Q');
                    } else {
                        sb.append('.');
                    }
                }
                solution.add(sb.toString());
                sb.setLength(0);
            }
            res.add(solution);
        }
        for (int i = index + 1; i < end; i++) {
            int r = i / n;
            int c = i % n;
            int ld = r - c;
            int rd = r + c;
            if (rowIndexSet.contains(r) || colIndexSet.contains(c)
                    || leftDiagonalSet.contains(ld)
                    || rightDiagonalSet.contains(rd)) {
                continue;
            }
            backTracing(i);
        }
        rowIndexSet.remove(row);
        colIndexSet.remove(col);
        leftDiagonalSet.remove(leftDiagonal);
        rightDiagonalSet.remove(rightDiagonal);
        indexList.remove(indexList.size() - 1);
    }

}

性能

3232.判断是否可以赢得数字游戏

目标

给你一个 正整数 数组 nums。

Alice 和 Bob 正在玩游戏。在游戏中,Alice 可以从 nums 中选择所有个位数 或 所有两位数,剩余的数字归 Bob 所有。如果 Alice 所选数字之和 严格大于 Bob 的数字之和,则 Alice 获胜。

如果 Alice 能赢得这场游戏,返回 true;否则,返回 false。

示例 1:

  • 输入:nums = [1,2,3,4,10]
  • 输出:false
  • 解释:
  • Alice 不管选个位数还是两位数都无法赢得比赛。

示例 2:

  • 输入:nums = [1,2,3,4,5,14]
  • 输出:true
  • 解释:
  • Alice 选择个位数可以赢得比赛,所选数字之和为 15。

示例 3:

  • 输入:nums = [5,5,5,25]
  • 输出:true
  • 解释:
  • Alice 选择两位数可以赢得比赛,所选数字之和为 25。

说明:

  • 1 <= nums.length <= 100
  • 1 <= nums[i] <= 99

思路

只要个位数之和与两位数之和不等就可以获胜。

代码

/**
 * @date 2024-11-30 1:23
 */
public class CanAliceWin3232 {

    public boolean canAliceWin(int[] nums) {
        int one = 0;
        int two = 0;
        for (int num : nums) {
            if (num < 10) {
                one += num;
            } else {
                two += num;
            }
        }
        return one != two;
    }
}

性能

3251.单调数组对的数目II

目标

给你一个长度为 n 的 正 整数数组 nums 。

如果两个 非负 整数数组 (arr1, arr2) 满足以下条件,我们称它们是 单调 数组对:

  • 两个数组的长度都是 n 。
  • arr1 是单调 非递减 的,换句话说 arr1[0] <= arr1[1] <= ... <= arr1[n - 1] 。
  • arr2 是单调 非递增 的,换句话说 arr2[0] >= arr2[1] >= ... >= arr2[n - 1] 。
  • 对于所有的 0 <= i <= n - 1 都有 arr1[i] + arr2[i] == nums[i] 。

请你返回所有 单调 数组对的数目。

由于答案可能很大,请你将它对 109 + 7 取余 后返回。

示例 1:

输入:nums = [2,3,2]
输出:4
解释:
单调数组对包括:
([0, 1, 1], [2, 2, 1])
([0, 1, 2], [2, 2, 0])
([0, 2, 2], [2, 1, 0])
([1, 2, 2], [1, 1, 0])

示例 2:

输入:nums = [5,5,5,5]
输出:126

说明:

  • 1 <= n == nums.length <= 2000
  • 1 <= nums[i] <= 1000

思路

有一个长度为 n 正整数数组 nums,可以将其拆成两个数组 arr1 arr2,使之满足 arr1[i] + arr2[i] == nums[i]。问 有多少种拆分方法使得 arr1 非递减 且 arr2 非递增。

与昨天的 3250.单调数组对的数目I 相比,nums[i] 的最大值从 50 变成了 1000。时间复杂度大概为 O(n*m^2),mnums[i] 的最大值,如果还沿用昨天的解法就会超时。

先将昨天的题目改写为动态规划,定义 dp[i][j] 表示最后一个元素为 j,长度为 i + 1 的满足条件的 arr1 个数。由于 arr1 是非递减的,如果最后一个元素为 arr1[i] = j 那么倒数第二个元素arr1[i - 1] <= j。同时我们还要考虑到 arr2 非递增,即 arr2[i - 1] >= arr2[i]nums[i - 1] - arr1[i - 1] >= nums[i] - arr1[i]arr1[i - 1] <= nums[i - 1] - nums[i] + arr1[i]。综上,arr1[i - 1] <= Math.min(j, nums[i - 1] - nums[i] + j)

经过上面的分析,dp[i][j] = Σdp[i - 1][k],其中 k ∈ [0, Math.min(j, nums[i - 1] - nums[i] + j)]。这样写会超时,针对每个 j,我们会进行多次重复的计算。

d = nums[i - 1] - nums[i],当 d >= 0 时,上界为 j,否则上界为 j + d

考虑 nums[i - 1] < nums[i],即 d < 0

  • arr1[i - 1] = j 时,令arr2[i - 1] = nums[i - 1] - j = a
  • arr1[i] = j 时,arr2[i] = nums[i] - arr1[i] = nums[i - 1] - d - j = a - dd < 0

也就是说,当 arr1[i] 的取值与上一层一样时,arr2[i] 比上一层的值大了 |d|。为了使第 iarr2 非递增,那么 arr1 的取值只能从 |d| 开始。

它们之间的约束关系是这样的,当 nums[i] 变大,arr1i 层取 j 时,arr2 的第 i 层比上一层增大了 |d|,这时我们必须舍弃 [0, |d|) 的取值,因为它必定大于上一层 arr2 的最大值。然后考虑第 i 层的 arr1[|d|, nums[i]] 的情况,由于第 i 层的 arr2 相比第 i - 1 层增大了 |d|,因此需要减小第 i - 1 层的 arr1,使第 i - 1 层的 arr2 增大。所以第 i 层的 j 对应第 i - 1 层的 j - |d|

dp[i][j] 的取值类似前缀和,只不过有约束条件,并不是所有值都合法。考虑简单的情况 nums[0] == nums[1] && i == 1,

  • 当 j == 0 时,dp[1][0] = dp[0][0] = 1
  • 当 j == 1 时,上一层(i == 0) arr1 可以取 0、1,dp[1][1] = dp[1][0] + dp[0][1] = 2
  • 当 j == 2 时,上一层(i == 0) arr1 可以取 0、1、2,dp[1][2] = dp[1][1] + dp[0][2] = 3

因此我们有 dp[i][j] = (dp[i][j - 1] + dp[i - 1][j - d])

代码


/**
 * @date 2024-11-29 9:39
 */
public class CountOfPairs3251 {

    public static int MOD = 1000000007;

    public int countOfPairs(int[] nums) {
        int res = 0;
        int n = nums.length;
        int[][] dp = new int[n][1001];
        for (int i = 0; i <= nums[0]; i++) {
            dp[0][i] = 1;
        }
        for (int i = 1; i < n; i++) {
            int d = Math.max(nums[i] - nums[i - 1], 0);
            for (int j = d; j <= nums[i]; j++) {
                if (j == 0) {
                    dp[i][j] = dp[i - 1][0] % MOD;
                } else {
                    dp[i][j] = (dp[i][j - 1] + dp[i - 1][j - d]) % MOD;
                }
            }
        }
        for (int i : dp[n - 1]) {
            res = (res + i) % MOD;
        }
        return res;
    }

}

性能

3250.单调数组对的数目I

目标

给你一个长度为 n 的 正 整数数组 nums 。

如果两个 非负 整数数组 (arr1, arr2) 满足以下条件,我们称它们是 单调 数组对:

  • 两个数组的长度都是 n 。
  • arr1 是单调 非递减 的,换句话说 arr1[0] <= arr1[1] <= ... <= arr1[n - 1] 。
  • arr2 是单调 非递增 的,换句话说 arr2[0] >= arr2[1] >= ... >= arr2[n - 1] 。
  • 对于所有的 0 <= i <= n - 1 都有 arr1[i] + arr2[i] == nums[i] 。

请你返回所有 单调 数组对的数目。

由于答案可能很大,请你将它对 10^9 + 7 取余 后返回。

示例 1:

输入:nums = [2,3,2]
输出:4
解释:
单调数组对包括:
([0, 1, 1], [2, 2, 1])
([0, 1, 2], [2, 2, 0])
([0, 2, 2], [2, 1, 0])
([1, 2, 2], [1, 1, 0])

示例 2:

输入:nums = [5,5,5,5]
输出:126

说明:

  • 1 <= n == nums.length <= 2000
  • 1 <= nums[i] <= 50

提示:

  • Let dp[i][s] is the number of monotonic pairs of length i with the arr1[i - 1] = s.
  • If arr1[i - 1] = s, arr2[i - 1] = nums[i - 1] - s.
  • Check if the state in recurrence is valid.

思路

有一个长度为 n 的正整数数组 nums,可以将其拆成两个数组 arr1 arr2,使之满足 arr1[i] + arr2[i] == nums[i]。问 有多少种拆分方法使得 arr1 非递减 且 arr2 非递增。

显然 arr1 确定之后,arr2 也就确定了。考虑枚举 arr1,判断 arr1 是否非递减, 以及arr2 是否非递增。可以使用记忆化搜索,对于位置 iarr1arr2 需要满足下面的条件:

  • arr1[i] >= arr1[i - 1]
  • arr2[i] = nums[i] - arr1[i] <= arr2[i - 1] = nums[i - 1] - arr1[i - 1],即 arr1[i] >= nums[i] - nums[i - 1] + arr1[i - 1]

也就是 nums[i] >= arr1[i] >= Math.max(nums[i] - nums[i - 1] + arr1[i - 1], arr1[i - 1])

代码


/**
 * @date 2024-11-28 10:36
 */
public class CountOfPairs3250 {

    public static int MOD = 1000000007;

    public int countOfPairs(int[] nums) {
        int res = 0;
        int n = nums.length;
        int[][] mem = new int[n + 1][51];
        for (int[] arr : mem) {
            Arrays.fill(arr, -1);
        }
        for (int i = 0; i <= nums[0]; i++) {
            res = (res + dfs(nums, 1, i, mem)) % MOD;
        }
        return res;
    }

    public int dfs(int[] nums, int i, int prev, int[][] mem) {
        int n = nums.length;
        if (i == n) {
            return 1;
        }
        int lowerBound = Math.max(prev, nums[i] - nums[i - 1] + prev);
        int next = i + 1;
        int res = 0;
        for (int j = lowerBound; j <= nums[i]; j++) {
            if (mem[next][j] == -1) {
                mem[next][j] = dfs(nums, next, j, mem) % MOD;
            }
            res = (res + mem[next][j]) % MOD;
        }
        return res;
    }

}

性能

3208.交替组II

目标

给你一个整数数组 colors 和一个整数 k ,colors表示一个由红色和蓝色瓷砖组成的环,第 i 块瓷砖的颜色为 colors[i] :

  • colors[i] == 0 表示第 i 块瓷砖的颜色是 红色 。
  • colors[i] == 1 表示第 i 块瓷砖的颜色是 蓝色 。

环中连续 k 块瓷砖的颜色如果是 交替 颜色(也就是说除了第一块和最后一块瓷砖以外,中间瓷砖的颜色与它 左边 和 右边 的颜色都不同),那么它被称为一个 交替 组。

请你返回 交替 组的数目。

注意 ,由于 colors 表示一个 环 ,第一块 瓷砖和 最后一块 瓷砖是相邻的。

示例 1:

输入:colors = [0,1,0,1,0], k = 3
输出:3

解释:

交替组包括:

示例 2:

输入:colors = [0,1,0,0,1,0,1], k = 6
输出:2

解释:

交替组包括:

示例 3:

输入:colors = [1,1,0,1], k = 4
输出:0

解释:

说明:

  • 3 <= colors.length <= 10^5
  • 0 <= colors[i] <= 1
  • 3 <= k <= colors.length

思路

有一个环形二进制数组(认为首尾相邻),如果连续的 k 个元素除了第一个与最后一个元素外,内部元素与它左边和右边的元素不同,则称这 k 个元素为一个交替组,求交替组的个数。

如果 k 取 3 就变成了 3206.交替组I

昨天的题枚举的是中间元素,今天这道题我们可以枚举左端点。将其视为一个特殊的滑动窗口问题,特殊之处在于窗口内元素需要满足的条件是 不存在连续相等的元素。显然,如果新移入窗口的元素使得条件不满足,即窗口内后两个元素相等,那么只要窗口内包含这个新移入的元素 条件就总是无法满足。

因此可以直接将左端点移到右边界,省去了移出元素的滑动过程。在向右扩展的时候可以对窗口内的元素计数,如果大于等于 k 则计入结果,直到右端点无法再继续扩展,重置计数器,然后以右边界为左端点继续该过程。

可以省略维护左边界的指针,重置计数器就相当于从当前位置重新计数。

我们可以通过偏移下标然后取余来处理环形数组的遍历。也可以参考 134.加油站 两次循环。

代码


/**
 * @date 2024-11-26 9:31
 */
public class NumberOfAlternatingGroups3208 {

    /**
     * 两次循环1ms
     */
    public int numberOfAlternatingGroups_v2(int[] colors, int k) {
        int res = 0;
        int n = colors.length;
        int prev = colors[n - k + 1];
        int size = 1;
        for (int i = n - k + 2; i < n; i++) {
            if (colors[i] == prev) {
                size = 1;
            } else {
                size++;
            }
            prev = colors[i];
        }
        for (int i = 0; i < n; i++) {
            if (colors[i] == prev) {
                size = 1;
            } else {
                size++;
            }
            prev = colors[i];
            if (size >= k) {
                res++;
            }
        }
        return res;
    }

    /**
     * 5ms
     */
    public int numberOfAlternatingGroups_v1(int[] colors, int k) {
        int res = 0;
        int n = colors.length;
        int size = 1;
        for (int i = n - k + 2; i < 2 * n; i++) {
            if (colors[i % n] == colors[(i - 1) % n]) {
                size = 1;
            } else {
                size++;
            }
            if (size >= k) {
                res++;
            }
        }
        return res;
    }

}

性能

3206.交替组I

目标

给你一个整数数组 colors ,它表示一个由红色和蓝色瓷砖组成的环,第 i 块瓷砖的颜色为 colors[i] :

  • colors[i] == 0 表示第 i 块瓷砖的颜色是 红色 。
  • colors[i] == 1 表示第 i 块瓷砖的颜色是 蓝色 。

环中连续 3 块瓷砖的颜色如果是 交替 颜色(也就是说中间瓷砖的颜色与它 左边 和 右边 的颜色都不同),那么它被称为一个 交替 组。

请你返回 交替 组的数目。

注意 ,由于 colors 表示一个 环 ,第一块 瓷砖和 最后一块 瓷砖是相邻的。

示例 1:

输入:colors = [1,1,1]
输出:0

解释:

示例 2:

输入:colors = [0,1,0,0,1]
输出:3

解释:

交替组包括:

说明:

  • 3 <= colors.length <= 100
  • 0 <= colors[i] <= 1

思路

有一个环形二进制数组(认为首尾相邻),判断存在多少个交替组,如果元素与它左右相邻的两个元素值不相等,称这三个元素为一个交替组。

直接模拟判断即可,第一个元素的左邻居以及最后一个元素的右邻居需要特殊处理。也可以通过取模统一处理,定义 i 的初值为 ni < 2n,循环内下标使用 (i - 1) % ni % n(i + 1) % n,不过没有必要对循环内的所有下标进行模运算,特殊处理效率更高。

官网题解循环使用的初值是 0i < n,不过循环内部计算的是 (i - 1 + n) % ni(i + 1) % n,节省了两次 i % n 取余运算。

代码

/**
 * @date 2024-11-26 8:56
 */
public class NumberOfAlternatingGroups3206 {

    public int numberOfAlternatingGroups_v1(int[] colors) {
        int n = colors.length;
        int res = 0;
        boolean b = colors[n - 1] != colors[0];
        if (colors[0] != colors[1] && b) {
            res++;
        }
        if (colors[n - 1] != colors[n - 2] && b) {
            res++;
        }
        for (int i = 1; i < n - 1; i++) {
            if (colors[i - 1] != colors[i] && colors[i + 1] != colors[i]) {
                res++;
            }
        }
        return res;
    }

    public int numberOfAlternatingGroups(int[] colors) {
        int n = colors.length;
        int res = 0;
        for (int i = n; i < 2 * n; i++) {
            if (colors[(i - 1) % n] != colors[i % n] && colors[(i + 1) % n] != colors[i % n]) {
                res++;
            }
        }
        return res;
    }
}

性能

743.网络延迟时间

目标

有 n 个网络节点,标记为 1 到 n。

给你一个列表 times,表示信号经过 有向 边的传递时间。 times[i] = (ui, vi, wi),其中 ui 是源节点,vi 是目标节点, wi 是一个信号从源节点传递到目标节点的时间。

现在,从某个节点 K 发出一个信号。需要多久才能使所有节点都收到信号?如果不能使所有节点收到信号,返回 -1 。

示例 1:

输入:times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2
输出:2

示例 2:

输入:times = [[1,2,1]], n = 2, k = 1
输出:1

示例 3:

输入:times = [[1,2,1]], n = 2, k = 2
输出:-1

说明:

  • 1 <= k <= n <= 100
  • 1 <= times.length <= 6000
  • times[i].length == 3
  • 1 <= ui, vi <= n
  • ui != vi
  • 0 <= wi <= 100
  • 所有 (ui, vi) 对都 互不相同(即,不含重复边)

思路

有一个 n 个节点的有向图 ,节点标记为 1 ~ n,求从其中某个节点 k 出发访问到所有其它节点的最短时间。

即从 k 出发求出到达所有其它节点的最短路径,然后取其中的最 值。

Floyd 算法的基本思想是动态规划。定义 dp[i][j] 表示从节点 i 到 节点 j 的最短路径,对于所有其它中间节点 m,更新 dp[i][j] = Math.min(dp[i][j], dp[i][m] + dp[m][j]),时间复杂度 O(n^3)。

如果 i -> j 有直接的通路则初始化 dp[i][j] 为路径的权值,否则为 INF

但是本题不需要其它起点的最短路径,因此可以使用 Dijkstra 算法、Bellman-Ford 算法 或者 SPFA 算法。

图的表示可以使用邻接矩阵、邻接表、前向星、链式前向星等结构。

代码


/**
 * @date 2024-11-25 9:08
 */
public class NetworkDelayTime743 {

    public int networkDelayTime(int[][] times, int n, int k) {
        int[][] dp = new int[n + 1][n + 1];
        for (int[] cost : dp) {
            Arrays.fill(cost, 20000);
        }
        for (int[] edge : times) {
            dp[edge[0]][edge[1]] = edge[2];
        }
        for (int m = 1; m <= n; m++) {
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= n; j++) {
                    if (i == j || i == m || j == m) {
                        continue;
                    }
                    dp[i][j] = Math.min(dp[i][j], dp[i][m] + dp[m][j]);
                }
            }
        }
        int res = -1;
        for (int i = 1; i <= n; i++) {
            if (i == k) {
                continue;
            }
            res = Math.max(dp[k][i], res);
        }
        return res == 20000 ? -1 : res;
    }

}

性能

632.最小区间

目标

你有 k 个 非递减排列 的整数列表。找到一个 最小 区间,使得 k 个列表中的每个列表至少有一个数包含在其中。

我们定义如果 b-a < d-c 或者在 b-a == d-c 时 a < c,则区间 [a,b] 比 [c,d] 小。

示例 1:

输入:nums = [[4,10,15,24,26], [0,9,12,20], [5,18,22,30]]
输出:[20,24]
解释: 
列表 1:[4, 10, 15, 24, 26],24 在区间 [20,24] 中。
列表 2:[0, 9, 12, 20],20 在区间 [20,24] 中。
列表 3:[5, 18, 22, 30],22 在区间 [20,24] 中。

示例 2:

输入:nums = [[1,2,3],[1,2,3],[1,2,3]]
输出:[1,1]

说明:

  • nums.length == k
  • 1 <= k <= 3500
  • 1 <= nums[i].length <= 50
  • -10^5 <= nums[i][j] <= 10^5
  • nums[i] 按非递减顺序排列

思路

k 个非递减排列的整数列表,找一个最小区间,使得 k 个列表中每个列表至少有一个元素包含其中。所谓最小区间指区间长度最小,如果长度相同,则起点小的区间更小。

可以将元素标记属于哪个列表,然后从小到大排序,使用滑动窗口,找到最小的窗口。

当元素移入/移出窗口,如何判断是否应该从集合中增加/删除列表种类?

  • 可以记录每个列表元素的最大下标,如果移出的元素等于该下标则说明窗口内不包含该列表中的元素。元素移入窗口时可以根据最大下标是否小于左边界来判断是否应该增加列表种类,考虑到开始时左边界为 0,应该将数组初始化为 -1
  • 也可以记录每个列表在窗口元素的个数,如果从 0 变为 1 则增加种类,如果从 1 变为 0 则减少。

代码


/**
 * @date 2024-11-24 15:14
 */
public class SmallestRange632 {

    /**
     * 优化代码逻辑
     */
    public int[] smallestRange_v1(List<List<Integer>> nums) {
        List<int[]> list = new ArrayList<>();
        for (int i = 0; i < nums.size(); i++) {
            for (Integer num : nums.get(i)) {
                list.add(new int[]{num, i});
            }
        }
        int[] res = new int[]{0, 1000000};
        list.sort((a, b) -> a[0] - b[0]);
        int n = list.size(), k = nums.size();
        int l = 0;
        int[] typeMaxIndex = new int[k];
        Arrays.fill(typeMaxIndex, -1);
        int types = 0;
        for (int r = 0; r < n; r++) {
            int[] e = list.get(r);
            int right = e[0];
            int type = e[1];
            int lastTypeMaxIndex = typeMaxIndex[type];
            typeMaxIndex[type] = r;
            if (lastTypeMaxIndex < l){
                types++;
            }
            while (types == k) {
                int[] left = list.get(l);
                int lType = left[1];
                if (typeMaxIndex[lType] == l++) {
                    types--;
                    if (right - left[0] < res[1] - res[0]) {
                        res[0] = left[0];
                        res[1] = right;
                    }
                }
            }
        }
        return res;
    }

    public int[] smallestRange(List<List<Integer>> nums) {
        List<int[]> list = new ArrayList<>();
        for (int i = 0; i < nums.size(); i++) {
            for (Integer num : nums.get(i)) {
                list.add(new int[]{num, i});
            }
        }
        int[] res = new int[]{0, 1000000};
        list.sort((a, b) -> a[0] - b[0]);
        int n = list.size(), k = nums.size();
        int l = 0;
        int[] typeMaxIndex = new int[k];
        Set<Integer> set = new HashSet<>();
        for (int r = 0; r < n; r++) {
            int[] e = list.get(r);
            int right = e[0];
            int type = e[1];
            typeMaxIndex[type] = r;
            set.add(type);
            while (set.size() == k) {
                int[] left = list.get(l);
                int lType = left[1];
                if (typeMaxIndex[lType] == l++) {
                    set.remove(lType);
                }
            }
            if (l >= 1 && !set.contains(list.get(l - 1)[1]) && set.size() == k - 1) {
                int left = list.get(l - 1)[0];
                if (right - left < res[1] - res[0]) {
                    res[0] = left;
                    res[1] = right;
                }
            }
        }
        return res;
    }
}

性能

3238.求出胜利玩家的数目

目标

给你一个整数 n ,表示在一个游戏中的玩家数目。同时给你一个二维整数数组 pick ,其中 pick[i] = [xi, yi] 表示玩家 xi 获得了一个颜色为 yi 的球。

如果玩家 i 获得的球中任何一种颜色球的数目 严格大于 i 个,那么我们说玩家 i 是胜利玩家。换句话说:

  • 如果玩家 0 获得了任何的球,那么玩家 0 是胜利玩家。
  • 如果玩家 1 获得了至少 2 个相同颜色的球,那么玩家 1 是胜利玩家。
  • ...
  • 如果玩家 i 获得了至少 i + 1 个相同颜色的球,那么玩家 i 是胜利玩家。

请你返回游戏中 胜利玩家 的数目。

注意,可能有多个玩家是胜利玩家。

示例 1:

输入:n = 4, pick = [[0,0],[1,0],[1,0],[2,1],[2,1],[2,0]]
输出:2
解释:
玩家 0 和玩家 1 是胜利玩家,玩家 2 和玩家 3 不是胜利玩家。

示例 2:

输入:n = 5, pick = [[1,1],[1,2],[1,3],[1,4]]
输出:0
解释:
没有胜利玩家。

示例 3:

输入:n = 5, pick = [[1,1],[2,4],[2,4],[2,4]]
输出:1
解释:
玩家 2 是胜利玩家,因为玩家 2 获得了 3 个颜色为 4 的球。

说明:

  • 2 <= n <= 10
  • 1 <= pick.length <= 100
  • pick[i].length == 2
  • 0 <= xi <= n - 1
  • 0 <= yi <= 10

思路

n 个玩家,pick[i][j] 表示第 i 次操作,玩家 pick[i][0] 捡起了颜色为 pick[i][1] 的球,如果玩家 pick[i][0] 捡起同一颜色球的数量大于 pick[i][0] 则胜出,求胜出玩家的总数。

只要达到条件就胜出,并不是零和游戏。玩家与球的颜色是一对多的关系,并且需要针对每种颜色计数,判断是否存在某些颜色球的个数 大于 玩家编号。

使用二维数组 playerBall[i][c] 表示玩家 i 捡起颜色为 c 的球的数目,遍历 pick 数组计算 playerBall[i][c],然后遍历 playerBall 统计胜出玩家的数目。

代码


/**
 * @date 2024-11-23 14:17
 */
public class WinningPlayerCount3238 {

    public int winningPlayerCount(int n, int[][] pick) {
        int[][] playerBall = new int[n][11];
        for (int i = 0; i < pick.length; i++) {
            // pick的i表示的是操作次数,j为0表示用户,j为1表示球的颜色
            playerBall[pick[i][0]][pick[i][1]]++;
        }
        int res = 0;
        for (int i = 0; i < playerBall.length; i++) {
            for (int j = 0; j < playerBall[i].length; j++) {
                if (playerBall[i][j] > i){
                    res++;
                    break;
                }
            }
        }
        return res;
    }
}

性能