1277.统计全为1的正方形子矩阵

目标

给你一个 m * n 的矩阵,矩阵中的元素不是 0 就是 1,请你统计并返回其中完全由 1 组成的 正方形 子矩阵的个数。

示例 1:

输入:matrix =
[
  [0,1,1,1],
  [1,1,1,1],
  [0,1,1,1]
]
输出:15
解释: 
边长为 1 的正方形有 10 个。
边长为 2 的正方形有 4 个。
边长为 3 的正方形有 1 个。
正方形的总数 = 10 + 4 + 1 = 15.

示例 2:

输入:matrix = 
[
  [1,0,1],
  [1,1,0],
  [1,1,0]
]
输出:7
解释:
边长为 1 的正方形有 6 个。 
边长为 2 的正方形有 1 个。
正方形的总数 = 6 + 1 = 7.

说明:

  • 1 <= arr.length <= 300
  • 1 <= arr[0].length <= 300
  • 0 <= arr[i][j] <= 1

思路

统计 m x n 矩阵中 全是 1 的正方形子矩阵个数。

遍历的逻辑是枚举长度,以左上顶点为圆心,长度为半径进行遍历。

代码


/**
 * @date 2025-08-20 8:44
 */
public class CountSquares1277 {

    public int countSquares(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        int res = 0;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] != 1) {
                    continue;
                }
                int max = Math.min(m - i, n - j);
                int l = 1;
                here:
                for (; l < max; l++) {
                    for (int y = i + l; y >= i; y--) {
                        if (matrix[y][j + l] == 0) {
                            break here;
                        }
                    }
                    for (int x = j + l; x >= j; x--) {
                        if (matrix[i + l][x] == 0) {
                            break here;
                        }
                    }
                }
                res += l;
            }
        }
        return res;
    }

}

性能

2348.全0子数组的数目

目标

给你一个整数数组 nums ,返回全部为 0 的 子数组 数目。

子数组 是一个数组中一段连续非空元素组成的序列。

示例 1:

输入:nums = [1,3,0,0,2,0,0,4]
输出:6
解释:
子数组 [0] 出现了 4 次。
子数组 [0,0] 出现了 2 次。
不存在长度大于 2 的全 0 子数组,所以我们返回 6 。

示例 2:

输入:nums = [0,0,0,2,0,0]
输出:9
解释:
子数组 [0] 出现了 5 次。
子数组 [0,0] 出现了 3 次。
子数组 [0,0,0] 出现了 1 次。
不存在长度大于 3 的全 0 子数组,所以我们返回 9 。

示例 3:

输入:nums = [2,10,2019]
输出:0
解释:没有全 0 子数组,所以我们返回 0 。

说明:

  • 1 <= nums.length <= 10^5
  • -10^9 <= nums[i] <= 10^9

思路

返回数组的全 0 子数组个数。

长度为 k 的子数组个数为 (1 + k) * k / 2。可以使用贪心策略,如果当前元素是 0 找到以它为起点的最长连续 0 数组,计算子数组个数。

代码


/**
 * @date 2025-08-19 8:54
 */
public class ZeroFilledSubarray2348 {

    public long zeroFilledSubarray(int[] nums) {
        long res = 0L;
        int n = nums.length;
        int i = 0;
        while (i < n){
            if (nums[i] != 0){
                i++;
                continue;
            }
            int start = i;
            while (i < n && nums[i] == 0){
                i++;
            }
            int cnt = i - start;
            res += (1L + cnt) * cnt / 2;
        }

        return res;
    }
}

性能

837.新21点

目标

爱丽丝参与一个大致基于纸牌游戏 “21点” 规则的游戏,描述如下:

爱丽丝以 0 分开始,并在她的得分少于 k 分时抽取数字。 抽取时,她从 [1, maxPts] 的范围中随机获得一个整数作为分数进行累计,其中 maxPts 是一个整数。 每次抽取都是独立的,其结果具有相同的概率。

当爱丽丝获得 k 分 或更多分 时,她就停止抽取数字。

爱丽丝的分数不超过 n 的概率是多少?

与实际答案误差不超过 10^-5 的答案将被视为正确答案。

示例 1:

输入:n = 10, k = 1, maxPts = 10
输出:1.00000
解释:爱丽丝得到一张牌,然后停止。

示例 2:

输入:n = 6, k = 1, maxPts = 10
输出:0.60000
解释:爱丽丝得到一张牌,然后停止。 在 10 种可能性中的 6 种情况下,她的得分不超过 6 分。

示例 3:

输入:n = 21, k = 17, maxPts = 10
输出:0.73278

说明:

  • 0 <= k <= n <= 10^4
  • 1 <= maxPts <= 10^4

思路

代码

性能

1780.判断一个数字是否可以表示成三的幂的和

目标

给你一个整数 n ,如果你可以将 n 表示成若干个 不同的 三的幂之和,请你返回 true ,否则请返回 false 。

对于一个整数 y ,如果存在整数 x 满足 y == 3x ,我们称这个整数 y 是三的幂。

示例 1:

输入:n = 12
输出:true
解释:12 = 31 + 32

示例 2:

输入:n = 91
输出:true
解释:91 = 30 + 32 + 34

示例 3:

输入:n = 21
输出:false

提示:

  • 1 <= n <= 10^7

思路

判断一个整数 n 能否用若干个 不同的 3 的幂之和表示。

直接的想法是使用 dfs 从小到大判断 3 的幂选或者不选。

从数学的角度考虑,如果 n 的三进制表示中包含 2 那么就无法用不同的三的幂之和表示。

代码


/**
 * @date 2025-08-14 9:54
 */
public class CheckPowersOfThree1780 {

    class Solution {
        public boolean checkPowersOfThree(int n) {
            while (n > 0) {
                if (n % 3 == 2) {
                    return false;
                }
                n /= 3;
            }
            return true;
        }
    }

    public boolean checkPowersOfThree(int n) {
        return dfs(1, 0, n);
    }

    public boolean dfs(int d, int num, int n) {
        if (num == n) {
            return true;
        } else if (num > n || d > n) {
            return false;
        }
        return dfs(d * 3, num, n) || dfs(d * 3, num + d, n);
    }

}

性能

2787.将一个数字表示成幂的和的方案数

目标

给你两个 正 整数 n 和 x 。

请你返回将 n 表示成一些 互不相同 正整数的 x 次幂之和的方案数。换句话说,你需要返回互不相同整数 [n1, n2, ..., nk] 的集合数目,满足 n = n1^x + n2^x + ... + nk^x 。

由于答案可能非常大,请你将它对 10^9 + 7 取余后返回。

比方说,n = 160 且 x = 3 ,一个表示 n 的方法是 n = 2^3 + 3^3 + 5^3 。

示例 1:

输入:n = 10, x = 2
输出:1
解释:我们可以将 n 表示为:n = 3^2 + 1^2 = 10 。
这是唯一将 10 表达成不同整数 2 次方之和的方案。

示例 2:

输入:n = 4, x = 1
输出:2
解释:我们可以将 n 按以下方案表示:
- n = 4^1 = 4 。
- n = 3^1 + 1^1 = 4 。

说明:

  • 1 <= n <= 300
  • 1 <= x <= 5

思路

求正整数的 x 次幂之和为 n 的组合数,要求组合中的数字不能重复。

最大正整数 max = n^(1/x),问题转换为使用 1^x, 2^x, ……, max^x 组成 n 的组合数。

恰好型 0-1 背包。

代码


/**
 * @date 2025-08-12 9:08
 */
public class NumberOfWays2787 {

    public int numberOfWays(int n, int x) {
        int mod = 1000000007;
        int max = (int) Math.ceil(Math.pow(n, 1.0 / x));
        long[] dp = new long[n + 1];
        dp[0] = 1;
        for (int i = 1; i <= max; i++) {
            int pow = (int) Math.pow(i, x);
            for (int j = n; j >= pow; j--) {
                dp[j] += dp[j - pow];
            }
        }
        return (int)(dp[n] % mod);
    }

}

性能

2438.二的幂数组中查询范围内的乘积

目标

给你一个正整数 n ,你需要找到一个下标从 0 开始的数组 powers ,它包含 最少 数目的 2 的幂,且它们的和为 n 。powers 数组是 非递减 顺序的。根据前面描述,构造 powers 数组的方法是唯一的。

同时给你一个下标从 0 开始的二维整数数组 queries ,其中 queries[i] = [lefti, righti] ,其中 queries[i] 表示请你求出满足 lefti <= j <= righti 的所有 powers[j] 的乘积。

请你返回一个数组 answers ,长度与 queries 的长度相同,其中 answers[i]是第 i 个查询的答案。由于查询的结果可能非常大,请你将每个 answers[i] 都对 10^9 + 7 取余 。

示例 1:

输入:n = 15, queries = [[0,1],[2,2],[0,3]]
输出:[2,4,64]
解释:
对于 n = 15 ,得到 powers = [1,2,4,8] 。没法得到元素数目更少的数组。
第 1 个查询的答案:powers[0] * powers[1] = 1 * 2 = 2 。
第 2 个查询的答案:powers[2] = 4 。
第 3 个查询的答案:powers[0] * powers[1] * powers[2] * powers[3] = 1 * 2 * 4 * 8 = 64 。
每个答案对 10^9 + 7 得到的结果都相同,所以返回 [2,4,64] 。

示例 2:

输入:n = 2, queries = [[0,0]]
输出:[2]
解释:
对于 n = 2, powers = [2] 。
唯一一个查询的答案是 powers[0] = 2 。答案对 10^9 + 7 取余后结果相同,所以返回 [2] 。

说明:

  • 1 <= n <= 10^9
  • 1 <= queries.length <= 10^5
  • 0 <= starti <= endi < powers.length

思路

给定一个正整数,将其拆分成最少数目的 2 的幂,即二进制表示中每一个 1 所表示的 2 的幂,按照从小到大的顺序放入 nums。有一个查询数组 queriesqueries[i] = [from, to] 表示查询 numsfromto 的乘积,返回对应的结果数组。

由于 nums 长度最大 31,因此可以提前预处理所有子数组的乘积,或值直接暴力计算查询范围内的元素乘积。

注意不能计算前缀乘积,为了防止溢出存的是余数,相除后取余并不满足分配律。或者换一种思路计算幂次的前缀和,然后再计算 2 的幂对 mod 取余。

代码


/**
 * @date 2025-08-11 9:52
 */
public class ProductQueries2438 {

    public int[] productQueries(int n, int[][] queries) {
        List<Integer> list = new ArrayList<>();
        for (int i = 0; i < 31; i++) {
            int p = 1 << i;
            if ((n & p) == p) {
                list.add(p);
            }
        }
        int mod = 1000000007;
        int[] res = new int[queries.length];
        for (int i = 0; i < queries.length; i++) {
            int from = queries[i][0];
            int to = queries[i][1];
            res[i] = 1;
            for (int j = from; j <= to; j++) {
                res[i] = (int) ((long) res[i] * list.get(j) % mod);
            }
        }
        return res;
    }

}

性能

869.重新排序得到2的幂

目标

给定正整数 n ,我们按任何顺序(包括原始顺序)将数字重新排序,注意其前导数字不能为零。

如果我们可以通过上述方式得到 2 的幂,返回 true;否则,返回 false。

示例 1:

输入:n = 1
输出:true

示例 2:

输入:n = 10
输出:false

说明:

  • 1 <= n <= 10^9

思路

判断数字重新排列后能否变成 2 的幂。

统计所有数位上数字的出现次数,如果与 2 的幂完全相同则返回 true。

代码


/**
 * @date 2025-08-10 13:49
 */
public class ReorderedPowerOf2_869 {

    public static int[][] nums = new int[31][10];

    static {
        for (int i = 0; i < 31; i++) {
            int num = 1 << i;
            while (num > 0) {
                int d = num % 10;
                nums[i][d]++;
                num /= 10;
            }
        }
    }

    public boolean reorderedPowerOf2(int n) {
        int[] digits = new int[10];
        while (n > 0) {
            int d = n % 10;
            digits[d]++;
            n /= 10;
        }
        here:
        for (int[] num : nums) {
            for (int i = 0; i < num.length; i++) {
                if (num[i] != digits[i]) {
                    continue here;
                }
            }
            return true;
        }
        return false;
    }

}

性能

808.分汤

目标

你有两种汤,A 和 B,每种初始为 n 毫升。在每一轮中,会随机选择以下四种服务操作中的一种,每种操作的概率为 0.25,且与之前的所有轮次 无关:

  1. 从汤 A 取 100 毫升,从汤 B 取 0 毫升
  2. 从汤 A 取 75 毫升,从汤 B 取 25 毫升
  3. 从汤 A 取 50 毫升,从汤 B 取 50 毫升
  4. 从汤 A 取 25 毫升,从汤 B 取 75 毫升

注意:

  • 不存在先分配 100 ml 汤B 的操作。
  • 汤 A 和 B 在每次操作中同时被倒入。
  • 如果一次操作要求你倒出比剩余的汤更多的量,请倒出该汤剩余的所有部分。

操作过程在任何回合中任一汤被用完后立即停止。

返回汤 A 在 B 前耗尽的概率,加上两种汤在 同一回合 耗尽概率的一半。返回值在正确答案 10^-5 的范围内将被认为是正确的。

示例 1:

输入:n = 50
输出:0.62500
解释:
如果我们选择前两个操作,A 首先将变为空。
对于第三个操作,A 和 B 会同时变为空。
对于第四个操作,B 首先将变为空。
所以 A 变为空的总概率加上 A 和 B 同时变为空的概率的一半是 0.25 *(1 + 1 + 0.5 + 0)= 0.625。

示例 2:

输入:n = 100
输出:0.71875
解释:
如果我们选择第一个操作,A 首先将变为空。
如果我们选择第二个操作,A 将在执行操作 [1, 2, 3] 时变为空,然后 A 和 B 在执行操作 4 时同时变空。
如果我们选择第三个操作,A 将在执行操作 [1, 2] 时变为空,然后 A 和 B 在执行操作 3 时同时变空。
如果我们选择第四个操作,A 将在执行操作 1 时变为空,然后 A 和 B 在执行操作 2 时同时变空。
所以 A 变为空的总概率加上 A 和 B 同时变为空的概率的一半是 0.71875。

说明:

  • 0 <= n <= 10^9

思路

代码

性能

3479.水果成篮III

目标

给你两个长度为 n 的整数数组,fruits 和 baskets,其中 fruits[i] 表示第 i 种水果的 数量,baskets[j] 表示第 j 个篮子的 容量。

你需要对 fruits 数组从左到右按照以下规则放置水果:

  • 每种水果必须放入第一个 容量大于等于 该水果数量的 最左侧可用篮子 中。
  • 每个篮子只能装 一种 水果。
  • 如果一种水果 无法放入 任何篮子,它将保持 未放置。

返回所有可能分配完成后,剩余未放置的水果种类的数量。

示例 1

输入: fruits = [4,2,5], baskets = [3,5,4]
输出: 1
解释:
fruits[0] = 4 放入 baskets[1] = 5。
fruits[1] = 2 放入 baskets[0] = 3。
fruits[2] = 5 无法放入 baskets[2] = 4。
由于有一种水果未放置,我们返回 1。

示例 2

输入: fruits = [3,6,1], baskets = [6,4,7]
输出: 0
解释:
fruits[0] = 3 放入 baskets[0] = 6。
fruits[1] = 6 无法放入 baskets[1] = 4(容量不足),但可以放入下一个可用的篮子 baskets[2] = 7。
fruits[2] = 1 放入 baskets[1] = 4。
由于所有水果都已成功放置,我们返回 0。

说明:

  • n == fruits.length == baskets.length
  • 1 <= n <= 10^5
  • 1 <= fruits[i], baskets[i] <= 10^9

思路

有水果 fruits 与 篮子 baskets 两个数组,fruits[i] 表示下标为 i 的水果数量,baskets[i] 表示下标为 i 位置上篮子的容量。现在需要按 fruits 的顺序从左往右将其放入篮子中,放置的位置是第一个能够容下水果的篮子,每个篮子只能放一种水果,如果没有位置能放下则保持未放置状态,求剩余未放置的水果种类。

暴力解法是枚举每种水果数量,然后枚举篮子,标记第一个能放下的篮子,时间复杂度为 O(n^2)。由于 basket 是无序的,没办法使用二分查找,并且排序会影响最终结果。因为未排序前,数量小的水果可能占据了大的篮子,导致数量多的水果无法放置。

考虑将 basket 分块,记录每一块的最大值,然后找到块内第一个大于 fruits[i] 的元素,然后将其置零。

代码


/**
 * @date 2025-08-05 15:20
 */
public class NumOfUnplacedFruits3479 {

    public int numOfUnplacedFruits(int[] fruits, int[] baskets) {
        int n = fruits.length;
        int blockSize = (int) Math.ceil(Math.sqrt(n));
        int m = (int) Math.ceil((double) n / blockSize);
        int[] block = new int[m];
        int bi = 0;
        while (bi < m) {
            int start = bi * blockSize;
            int max = 0;
            for (int j = start; j < start + blockSize && j < n; j++) {
                max = Math.max(max, baskets[j]);
            }
            block[bi++] = max;
        }
        int res = n;
        for (int fruit : fruits) {
            int i = 0;
            for (; i < m; i++) {
                if (fruit <= block[i]) {
                    res--;
                    break;
                }
            }
            int start = i * blockSize;
            int newMax = 0;
            for (int j = start; j < start + blockSize && j < n; j++) {
                if (baskets[j] >= fruit) {
                    if (baskets[j] == block[i]) {
                        for (int k = j + 1; k < start + blockSize && k < n; k++) {
                            newMax = Math.max(newMax, baskets[k]);
                        }
                        block[i] = newMax;
                    }
                    baskets[j] = 0;
                    break;
                } else {
                    newMax = Math.max(newMax, baskets[j]);
                }
            }
        }
        return res;
    }

}

性能

904.水果成篮

目标

你正在探访一家农场,农场从左到右种植了一排果树。这些树用一个整数数组 fruits 表示,其中 fruits[i] 是第 i 棵树上的水果 种类 。

你想要尽可能多地收集水果。然而,农场的主人设定了一些严格的规矩,你必须按照要求采摘水果:

  • 你只有 两个 篮子,并且每个篮子只能装 单一类型 的水果。每个篮子能够装的水果总量没有限制。
  • 你可以选择任意一棵树开始采摘,你必须从 每棵 树(包括开始采摘的树)上 恰好摘一个水果 。采摘的水果应当符合篮子中的水果类型。每采摘一次,你将会向右移动到下一棵树,并继续采摘。
  • 一旦你走到某棵树前,但水果不符合篮子的水果类型,那么就必须停止采摘。

给你一个整数数组 fruits ,返回你可以收集的水果的 最大 数目。

示例 1:

输入:fruits = [1,2,1]
输出:3
解释:可以采摘全部 3 棵树。

示例 2:

输入:fruits = [0,1,2,2]
输出:3
解释:可以采摘 [1,2,2] 这三棵树。
如果从第一棵树开始采摘,则只能采摘 [0,1] 这两棵树。

示例 3:

输入:fruits = [1,2,3,2,2]
输出:4
解释:可以采摘 [2,3,2,2] 这四棵树。
如果从第一棵树开始采摘,则只能采摘 [1,2] 这两棵树。

示例 4:

输入:fruits = [3,3,3,1,2,1,1,2,3,3,4]
输出:5
解释:可以采摘 [1,2,1,1,2] 这五棵树。

说明:

  • 1 <= fruits.length <= 10^5
  • 0 <= fruits[i] < fruits.length

思路

求满足条件的子数组的最大长度,要求子数组最多包含两个不同的元素。

滑动窗口。

代码


/**
 * @date 2025-08-04 8:51
 */
public class TotalFruit904 {

    public int totalFruit(int[] fruits) {
        int n = fruits.length;
        int res = 0;
        Map<Integer, Integer> map = new HashMap<>();
        int l = 0;
        for (int i = 0; i < n; i++) {
            map.merge(fruits[i], 1, Integer::sum);
            while (map.size() > 2) {
                map.merge(fruits[l], -1, Integer::sum);
                if (map.get(fruits[l]) == 0) {
                    map.remove(fruits[l]);
                }
                l++;
            }
            res = Math.max(res, i - l + 1);
        }
        return res;
    }

}

性能