1997.访问完所有房间的第一天

目标

你需要访问 n 个房间,房间从 0 到 n - 1 编号。同时,每一天都有一个日期编号,从 0 开始,依天数递增。你每天都会访问一个房间。

最开始的第 0 天,你访问 0 号房间。给你一个长度为 n 且 下标从 0 开始 的数组 nextVisit 。在接下来的几天中,你访问房间的 次序 将根据下面的 规则 决定:

  • 假设某一天,你访问 i 号房间。
  • 如果算上本次访问,访问 i 号房间的次数为 奇数 ,那么 第二天 需要访问 nextVisit[i] 所指定的房间,其中 0 <= nextVisit[i] <= i 。
  • 如果算上本次访问,访问 i 号房间的次数为 偶数 ,那么 第二天 需要访问 (i + 1) mod n 号房间。

请返回你访问完所有房间的第一天的日期编号。题目数据保证总是存在这样的一天。由于答案可能很大,返回对 10^9 + 7 取余后的结果。

示例 1:

输入:nextVisit = [0,0]
输出:2
解释:
- 第 0 天,你访问房间 0 。访问 0 号房间的总次数为 1 ,次数为奇数。
  下一天你需要访问房间的编号是 nextVisit[0] = 0
- 第 1 天,你访问房间 0 。访问 0 号房间的总次数为 2 ,次数为偶数。
  下一天你需要访问房间的编号是 (0 + 1) mod 2 = 1
- 第 2 天,你访问房间 1 。这是你第一次完成访问所有房间的那天。

示例 2:

输入:nextVisit = [0,0,2]
输出:6
解释:
你每天访问房间的次序是 [0,0,1,0,0,1,2,...] 。
第 6 天是你访问完所有房间的第一天。

示例 3:

输入:nextVisit = [0,1,2,0]
输出:6
解释:
你每天访问房间的次序是 [0,0,1,1,2,2,3,...] 。
第 6 天是你访问完所有房间的第一天。

说明:

  • n == nextVisit.length
  • 2 <= n <= 10^5
  • 0 <= nextVisit[i] <= i

思路

这道题用了3.5小时,也不知道花费这么多精力到底值不值得。这道题基本上是调试出来的,好多坑都没有考虑到。

说回这道题,有 0 到 n-1 共 n 个房间,每天可以访问一个房间,第 0 天访问 0 号房,然后根据当前房间的被访问次数来决定明天访问的房间。通俗来讲就是,如果当前房间cur被访问次数为奇数,访问包括当前房间在内的由参数指定的房间[0, cur];如果为偶数,则访问编号为cur+1的房间。需要我们返回首次访问 n-1 房间是第几天。

我上来想都没想就直接按照题意把代码写出来了,主要是理解题意。不出所料,提交超时。

在第30个用例的时候超时了,参数是这样的 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],即每前进一个房间都退回到第0个房间从头开始。总共 74 个房间,由于每个房间需要访问偶数次才可以前进,因此 f(n) = 2(f(n-1) + 1) 其中 f(0)=0, f(1)=2,n为正整数。两边都加上2得f(n) + 2 = 2(f(n-1) + 2),根据等比数列公式an = a1*q^(n-1),代入a1 = f(1) + 2 = 4, q = 2,得 f(n) = 2^(n+1) - 2。访问到编号为 74-1 的房间要等到第 2^74 -2 天。计算这个主要是为了说明问题的规模,按照题目描述去循环肯定是不行的。

很明显我们需要使用动态规划来求解。那么状态转移方程如何写?哪些子问题是重复计算的?经过观察我们知道,首次访问到某一房间的时候,之前所有房间的访问次数一定是偶数。当我们根据参数向后返回的时候,相当于是从指定的房间到当前房间又重新经历了一遍,因为参数指定的房间是固定的。于是我们可以保存首次访问到某房间是第几天,当后退到某房间之后就不用再重新循环了,直接计算天数,即天数累加上 dp[max] - dp[back] + 1

上面的算法是题目完成之后才弄明白的,写代码的时候遇到了许多坑:

  1. 首先是初值问题,dp[0]到底取1还是0。刚开始没有想明白dp[n]的含义,根据上面的定义,第一次访问到0号房间是第0天,应该取0。但是程序里需要在第一次访问到房间的时候,天数加1然后赋值给dp,但是对于第0个房间,会错误地将dp[0]改为1,那么后续的天数计算就需要多加1,因为少减了1天(这个问题可以将初始的maxRoom置为0,可以回避该分支的执行)。刚开始我根据错误的初始条件,观察上面超时的用例写的状态转移方程为dp[max] - dp[back] + 2,提交之后发现有的测试用例给出的结果比预期结果多了1,排查了半天才发现问题。

  2. 日期编号溢出的问题,刚开始dp与day都使用的int类型,在计算状态转移方程的时候有可能溢出,修改为long之后能够通过一些测试用例,但是后面还是会出现负值。这时我开始注意到这个问题了,就是dp保存的是取模之后的值,相减的时候会不会有问题?我们不可能无限制地扩展bit位,不可能存储准确的数值,取模是必要的。但是结果为什么还是有负值?这时灵光一闪,发现返回的负值只要加上MOD就可以得到正确的结果。这一定不是偶然的,后来才明白是因为后面的天数取模变小了,相减出现了负值,并不是溢出。但是,即便是负值一直取模,到最后返回结果的时候再加MOD也是正确的(看了官方题解,是在相减的时候加上了MOD)。

    注意以下事实:

    在java中进行取模运算时,结果的符号与被除数(即左边的操作数)相同

    • -7 % 15 = -7
    • 7 % -15 = 7
    • -7 % -15 = -7
    • -7 % 3 = -1
    • 7 % -3 = 1
    • -7 % -3 = -1
    • (-7 + 15) % 15 = -7 + 15

    补码(Two's Complement)是有符号数的一种二进制表示方式,主要用于计算机系统中数值的表示和存储。这种表示方式具有统一处理符号位和数值位、统一处理加法和减法的优点。

    补码命名中的“2的补数”描述了补码的一个特性:一个补码可以通过被2的位长次方减去,得到它的相反数。例如,对于一个4位的补码,0001(十进制为1)的相反数可以通过计算2^4 - 0001得到,结果为1111(十进制为-1)。

    在计算机中,正数的补码与其原码相同,而负数的补码则是通过对其绝对值的原码取反后加1得到。这种转换过程与原码的转换过程几乎相同,不需要额外的硬件电路。

    补码的使用在电路设计上相当方便,因为只要有加法电路及补码电路,就可以完成各种有号数的加法和减法运算。

    对一个正数取反加1,可以得到其相反数的补码。

    对一个负数取反加1,可以得到其绝对值。因为负数a的补码就是2^n - |a|。 其中2^n 可以想象成 n 个bit位均为1的二进制数加1。用所有bit位为1的数去减任意数就是取反,因为肯定是1变0,0变1。最后再加上多出来的1,就得到了补码。

    对n位2进制数(不考虑符号位)求补码其实就是求相对于2^n的补数。

  3. 循环的结束条件问题,最开始使用的结束条件 dp[roomNums - 1] == 0,判断是否是第一次访问使用的是dp[maxRoom] == 0。这就有问题了,第 233/239 个测试用例很特殊,因为结束时的天数刚好等于MOD,取模后为0,导致程序无法结束。于是后面改成了根据访问次数是否为0来判断。但是条件修改之后,访问次数在哪里累加也成了关键,如果在判断之前加就不对,牵一发而动全身。

代码

/**
 * @date 2024-03-28 0:02
 */
public class FirstDayBeenInAllRooms1997 {

    private static final int MOD = 1000000007;

    public int firstDayBeenInAllRooms_v1(int[] nextVisit) {
        int roomNums = nextVisit.length;
        int[] visitCount = new int[roomNums];
        long[] dp = new long[roomNums];
        dp[0] = 0;
        long day = 0;
        int currentRoom = 0;
        int maxRoom = 0;
        visitCount[currentRoom] = 1;
        while (visitCount[roomNums - 1] == 0) {
            if (visitCount[currentRoom] % 2 == 1) {
                currentRoom = nextVisit[currentRoom];
            } else {
                currentRoom = (currentRoom + 1) % roomNums;
                maxRoom = Math.max(currentRoom, maxRoom);
            }
            if (visitCount[maxRoom] == 0) {
                visitCount[currentRoom] += 1;
                day = (day + 1) % MOD;
                    dp[currentRoom] = day;
            } else {
                if (currentRoom != maxRoom) {
                    day = (day + dp[maxRoom] - dp[currentRoom] + 1L) % MOD;
                    currentRoom = maxRoom;
                } else {
                    day = (day + 1) % MOD;
                }
                visitCount[currentRoom]++;
            }
        }
        return (int) (day < 0 ? MOD + day : day);
    }

    public static void main(String[] args) {
        FirstDayBeenInAllRooms1997 main = new FirstDayBeenInAllRooms1997();
        System.out.println(main.firstDayBeenInAllRooms_v1(new int[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}));
        System.out.println(FastPowerMod.fastPowerMod(2, 74, MOD));
//        System.out.println(main.firstDayBeenInAllRooms_v1(new int[]{0,1,2,0}));
//        System.out.println(main.firstDayBeenInAllRooms_v1(new int[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 1, 8}));
//        System.out.println(main.firstDayBeenInAllRooms_v1(new int[]{0, 0, 1, 2, 4, 0, 1, 6, 0, 0, 2, 3, 4, 3, 4, 11, 6, 0, 16, 14, 20, 16, 9, 9, 1, 8, 8, 4, 14, 13, 5, 12, 8, 18, 27, 34, 36, 13, 10, 35, 13, 31, 13, 29, 2, 45, 17, 30, 10, 18, 41, 14, 41, 22, 2, 4, 1, 15, 27, 35, 12, 10, 46, 25, 61, 8, 65, 57, 48, 61, 8, 35, 2, 66, 47, 5, 54, 76, 73, 51, 13, 64, 15, 2}));
//        System.out.println(main.firstDayBeenInAllRooms_v1(new int[]{0,0,0,0,2,2,1,2,3,8,9,5,1,6,8,5,10,5,18,2,15,7,22,4,6,10,19,16,3,25,12,28,1,27,25,25,35,16,7,23,37,8,28,8,18,41,36,29}));

    }

性能

2671.频率跟踪器

目标

请你设计并实现一个能够对其中的值进行跟踪的数据结构,并支持对频率相关查询进行应答。

实现 FrequencyTracker 类:

  • FrequencyTracker():使用一个空数组初始化 FrequencyTracker 对象。
  • void add(int number):添加一个 number 到数据结构中。
  • void deleteOne(int number):从数据结构中删除一个 number 。数据结构 可能不包含 number ,在这种情况下不删除任何内容。
  • bool hasFrequency(int frequency): 如果数据结构中存在出现 frequency 次的数字,则返回 true,否则返回 false。

示例 1:

输入
["FrequencyTracker", "add", "add", "hasFrequency"]
[[], [3], [3], [2]]
输出
[null, null, null, true]

解释
FrequencyTracker frequencyTracker = new FrequencyTracker();
frequencyTracker.add(3); // 数据结构现在包含 [3]
frequencyTracker.add(3); // 数据结构现在包含 [3, 3]
frequencyTracker.hasFrequency(2); // 返回 true ,因为 3 出现 2 次

示例 2:

输入
["FrequencyTracker", "add", "deleteOne", "hasFrequency"]
[[], [1], [1], [1]]
输出
[null, null, null, false]

解释
FrequencyTracker frequencyTracker = new FrequencyTracker();
frequencyTracker.add(1); // 数据结构现在包含 [1]
frequencyTracker.deleteOne(1); // 数据结构现在为空 []
frequencyTracker.hasFrequency(1); // 返回 false ,因为数据结构为空

示例 3:

输入
["FrequencyTracker", "hasFrequency", "add", "hasFrequency"]
[[], [2], [3], [1]]
输出
[null, false, null, true]

解释
FrequencyTracker frequencyTracker = new FrequencyTracker();
frequencyTracker.hasFrequency(2); // 返回 false ,因为数据结构为空
frequencyTracker.add(3); // 数据结构现在包含 [3]
frequencyTracker.hasFrequency(1); // 返回 true ,因为 3 出现 1 次

说明:

  • 1 <= number <= 10^5
  • 1 <= frequency <= 10^5
  • 最多调用 add、deleteOne 和 hasFrequency 共计 2 * 10^5 次

思路

这道题要我们写一个数据结构,能够实时追踪已保存数字的出现频率。我们可以很方便地使用Map记录数字出现的频率,但是无法直接判断频率是否存在。只能遍历EntrySet一个一个找。

于是考虑再记录一个以频率为Key,相应频率的数字个数为value的Map,以便直接判断是否存在相应的频率。

那么第一个Map是否可以省略呢?当然不行,因为数字新增或删除后,相应的频率也会发生变化。如果不记录的话,无法更新第二个Map。

当数字出现频率增加,除了要累加第一个Map相应数字的频率,还要同时将第二个Map原频率对应数字的个数减1,新频率对应数字的个数加1。

当数字出现频率减少,除了要减小第一个Map相应数字的频率,还要同时将第二个Map原频率对应数字的个数减1,新频率对应数字的个数加1。

代码

/**
 * @date 2024-03-21 8:57
 */
public class FrequencyTracker2671 {

    class FrequencyTracker {
        private final Map<Integer, Integer> elements;
        private final Map<Integer, Integer> fRecord;

        public FrequencyTracker() {
            elements = new HashMap<>();
            fRecord = new HashMap<>();
        }

        public void add(int number) {
            Integer f = elements.get(number) == null ? 0 : elements.get(number);
            if (f != 0) {
                fRecord.put(f, fRecord.get(f) - 1);
            }
            elements.merge(number, 1, Integer::sum);
            fRecord.merge(++f, 1, Integer::sum);
        }

        public void deleteOne(int number) {
            Integer f = elements.get(number) == null ? 0 : elements.get(number);
            if (f != 0) {
                elements.put(number, f - 1);
                fRecord.put(f, fRecord.get(f) - 1);
                fRecord.merge(--f, 1, Integer::sum);
            }
        }

        public boolean hasFrequency(int frequency) {
            return fRecord.get(frequency) != null && fRecord.get(frequency) > 0;
        }
    }

性能

有网友写的变长数组性能更高一些,如果是直接根据题目最大范围创建数组,针对这些测试案例性能反而不好。

518.零钱兑换II

目标

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。

假设每一种面额的硬币有无限个。

题目数据保证结果符合 32 位带符号整数。

示例 1:

输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:

输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。

示例 3:

输入:amount = 10, coins = [10] 
输出:1

说明:

  • 1 <= coins.length <= 300
  • 1 <= coins[i] <= 5000
  • coins 中的所有值 互不相同
  • 0 <= amount <= 5000

思路

// todo

代码

/**
 * @date 2024-03-25 8:31
 */
public class CoinChange {

    public int change(int amount, int[] coins) {
        int[] dp = new int[amount + 1];
        dp[0] = 1;
        for (int coin : coins) {
            for (int j = coin; j <= amount; j++) {
                dp[j] += dp[j - coin];
            }
        }
        return dp[amount];
    }

    public static void main(String[] args) {
        CoinChange main = new CoinChange();
//        int amount = 5;
        int amount = 500;
        int[] coins = new int[]{1, 2, 5};
//        System.out.println(main.change(amount, coins));
//        System.out.println(main.change(amount, coins));
        System.out.println(main.change(amount, coins));
    }
}

性能

// todo

322.零钱兑换

目标

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

说明:

  • 1 <= coins.length <= 12
  • 1 <= coins[i] <= 2^31 - 1
  • 0 <= amount <= 10^4

思路

// todo

思考的方向错了,试图用贪心算法枚举可能的组合。做法是优先选面值最大的,取得余数,再计算下一个面值的余数,直到余数为0。但是这样得到的不一定是最优解。尝试将最大面值的个数减一,然后余数加上最大面值,重新计算。但是还是一样的,如果要调整的话,所有面值的个数都要调整,不能只调整最大的,后面的还用贪心,这样问题就不可解了。

代码

/**
 * @date 2024-03-24 0:04
 */
public class CoinChange {

    public int coinChange(int[] coins, int amount) {
        int max = amount + 1;
        int[] dp = new int[amount + 1];
        Arrays.fill(dp, max);
        dp[0] = 0;
        for (int i = 1; i <= amount; i++) {
            for (int j = 0; j < coins.length; j++) {
                if (coins[j] <= i) {
                    dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
                }
            }
        }
        return dp[amount] > amount ? -1 : dp[amount];
    }

    public static void main(String[] args) {
        CoinChange main = new CoinChange();
//        int[] coins = new int[]{3, 7};
        int[] coins = new int[]{186, 419, 83, 408};
//        System.out.println(main.coinChange(coins, 9));
        System.out.println(main.coinChange(coins, 6249));
    }
}

性能

// todo

310.最小高度树

目标

树是一个无向图,其中任何两个顶点只通过一条路径连接。 换句话说,任何一个没有简单环路的连通图都是一棵树。

给你一棵包含 n 个节点的树,标记为 0 到 n - 1 。给定数字 n 和一个有 n - 1 条无向边的 edges 列表(每一个边都是一对标签),其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间存在一条无向边。

可选择树中任何一个节点作为根。当选择节点 x 作为根节点时,设结果树的高度为 h 。在所有可能的树中,具有最小高度的树(即,min(h))被称为 最小高度树 。

请你找到所有的 最小高度树 并按 任意顺序 返回它们的根节点标签列表。

树的 高度 是指根节点和叶子节点之间最长向下路径上边的数量。

说明:

  • 1 <= n <= 2 * 10^4
  • edges.length == n - 1
  • 0 <= ai, bi < n
  • ai != bi
  • 所有 (ai, bi) 互不相同
  • 给定的输入 保证 是一棵树,并且 不会有重复的边

思路

一看到这个题目就想起了换根动态规划,参考2581_统计可能的树根数目

这个题是medium,但是感觉比上面参考那个hard题难多了,状态转换方程很难想。基本都是靠错误案例调试出来的。最开始写的dp方法调试了好几个小时,测试通过但是超时。然后开始怀疑dp根本就没法解,因为换根后状态是变化的,需要动态调整高度,并且还要区分当前节点是否为原来的根提供了最大高度。结果改到最后和暴力解法差不多了。

这种解法的关键是弄清楚换根之后节点高度的变化。经过分析只有换根的两个节点受到影响。分为两种情况,如果新根为旧根提供了最大高度,那么旧根应变为其邻接节点次大高度+1(第一次递归进来时计算)。如果新根没有为旧根提供最大高度,旧根高度不变仍为其邻接节点最大高度+1(第一次递归进来时计算)。新根是其邻接节点最大高度+1(这里面包括了刚才改变高度的旧根)。

注意:这里每个节点记录的是以0为根进行dfs,从叶子节点累加的高度。因此,当前节点高度就等于邻接节点最大高度加1。

代码

/**
 * @date 2024-03-17 16:04
 */
public class FindMinHeightTrees {

    public int[] res;
    public int minHeight;
    List<Integer>[] g;
    int[] dp;

    public List<Integer> findMinHeightTrees(int n, int[][] edges) {
        g = new ArrayList[n];
        for (int i = 0; i < g.length; i++) {
            g[i] = new ArrayList<>();
        }
        dp = new int[n];
        res = new int[n];
        minHeight = n;
        for (int i = 0; i < edges.length; i++) {
            g[edges[i][0]].add(edges[i][1]);
            g[edges[i][1]].add(edges[i][0]);
        }
        dfs(0, 0);
        redfs(0, 0);

        List<Integer> minHeights = new ArrayList<>();
        for (int i = 0; i < n; i++) {
            if (res[i] == minHeight) {
                minHeights.add(i);
            }
        }
        return minHeights;

    }

    public void redfs(int root, int parent) {
        // 进入到该层后,保存其最大与次大深度,后面换根后再回来遍历其它兄弟节点时不会受到换根影响
        // 由于是深度遍历,换根到子节点与当前根的深度有关
        // 由子节点返回后,状态已保存,不受换根影响
        int max = 0;
        int second = 0;
        for (Integer neighbor : g[root]) {
            if (dp[neighbor] > max) {
                second = max;
                max = dp[neighbor];
            } else if (dp[neighbor] > second) {
                second = dp[neighbor];
            }
        }
        // max是与root相邻节点的高度,加1才是root的最大高度
        res[root] = max + 1;
        // 更新最小高度
        minHeight = Math.min(minHeight, res[root]);
        for (Integer next : g[root]) {
            if (next == parent) {
                // 遇到叶子节点返回
                continue;
            }
            // 换到下一个根next,修改root的高度,如果下一个点为当前点提供了最大高度,那么当前节点高度为
            // 次高加一,否则是最高加一
            dp[root] = (dp[next] == max ? second : max) + 1;
            redfs(next, root);
        }
    }

    public int dfs(int root, int parent) {
        dp[root] = 1;
        for (Integer next : g[root]) {
            if (next != parent) {
                dp[root] = Math.max(dp[root], dfs(next, root) + 1);
            }
        }
        return dp[root];
    }

    public static void main(String[] args) {
        FindMinHeightTrees main = new FindMinHeightTrees();
//        System.out.println(main.findMinHeightTrees(4, new int[][]{{1, 0}, {1, 2}, {1, 3}}));
//        System.out.println(main.findMinHeightTrees(6, new int[][]{{3, 0}, {3, 1}, {3, 2}, {3, 4}, {5, 4}}));
//        System.out.println(main.findMinHeightTrees(7, new int[][]{{0, 1}, {1, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}}));
//        System.out.println(main.findMinHeightTrees(8, new int[][]{{0,1},{1,2},{2,3},{0,4},{4,5},{4,6},{6,7}}));
        System.out.println(main.findMinHeightTrees(11, new int[][]{{0, 1}, {0, 2}, {2, 3}, {0, 4}, {2, 5}, {5, 6}, {3, 7}, {6, 8}, {8, 9}, {9, 10}}));
//        System.out.println(main.findMinHeightTrees(2, new int[][]{{0, 1}}));
    }
}

性能

2789.合并后数组中的最大元素

目标

给你一个下标从 0 开始、由正整数组成的数组 nums 。

你可以在数组上执行下述操作 任意 次:

  • 选中一个同时满足 0 <= i < nums.length - 1 和 nums[i] <= nums[i + 1] 的整数 i 。将元素 nums[i + 1] 替换为 nums[i] + nums[i + 1] ,并从数组中删除元素 nums[i] 。

返回你可以从最终数组中获得的 最大 元素的值。

示例 1:

输入:nums = [2,3,7,9,3]
输出:21
解释:我们可以在数组上执行下述操作:
- 选中 i = 0 ,得到数组 nums = [5,7,9,3] 。
- 选中 i = 1 ,得到数组 nums = [5,16,3] 。
- 选中 i = 0 ,得到数组 nums = [21,3] 。
最终数组中的最大元素是 21 。可以证明我们无法获得更大的元素。

示例 2:

输入:nums = [5,3,3]
输出:11
解释:我们可以在数组上执行下述操作:
- 选中 i = 1 ,得到数组 nums = [5,6] 。
- 选中 i = 0 ,得到数组 nums = [11] 。
最终数组中只有一个元素,即 11 。

说明:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^6

思路

这个题要我们对一个数组进行操作并返回最大的元素值。这里的操作指的是合并相邻的非严格递增元素。

刚开始没有头绪,如果真的按照操作步骤先把符合条件的值求出来,替换掉较大元素的值并删掉较小元素,那么就需要频繁地移动数组数据。

除此之外需要考虑一个重要的问题,如何合并才能使最终的结果最大?如果从前向后合并,比如 [2,6,7] 先合并前两个得到[8,7]肯定没有从后向前合并得到的值 [2, 13] [15] 大。是否存在那种先从前向后合并,然后再从后向前合并才能得到最大值的情况?

刚开始是不那么容易弄清的。也考虑过优先合并 后面的元素值 比 合并后的元素值 大的 元素,提前考虑了一步能否避免上面的情况?好像可以,因为操作没有破坏原数组能否合并的状态。那么这种操作需要循环几次?时间复杂度是O(n)~O(nlogn)吗?

[1,2,1,4,1,2,1,4]一次遍历后可以变为[3,5,3,5],然后再遍历一次得到 [8, 8],再来一次 [16],即O(nlogn)。更好的情况就是递增序列O(n)。

经过上面的分析可以发现,优先使后面的元素最大才能得到最大值。那么为什么不从后向前遍历并累加呢?如果遇到一个元素的值比后面所有元素的累加和还要大,那不管前面怎么操作,由于元素都是正整数,合并后只会更大。

想清楚了这一点就非常简单了。

代码

/**
 * @date 2024-03-14 11:29
 */
public class MaxArrayValue {

    public long maxArrayValue(int[] nums) {
        long res = nums[nums.length - 1];
        for (int i = nums.length - 1; i >= 1; i--) {
            res = res >= nums[i - 1] ? res + nums[i - 1] : nums[i - 1];
        }
        return res;
    }

    public static void main(String[] args) {
        MaxArrayValue main = new MaxArrayValue();
//        int[] nums = new int[]{2, 3, 7, 9, 3};
//        int[] nums = new int[]{5, 3, 3};
//        int[] nums = new int[]{77};
        int[] nums = new int[]{34, 95, 50, 12, 25, 100, 21, 3, 25, 16, 76, 73, 93, 46, 18};
        System.out.println(main.maxArrayValue(nums));
    }
}

性能

2684.矩阵中移动的最大次数

目标

给你一个下标从 0 开始、大小为 m x n 的矩阵 grid ,矩阵由若干 正 整数组成。

你可以从矩阵第一列中的 任一 单元格出发,按以下方式遍历 grid :

从单元格 (row, col) 可以移动到 (row - 1, col + 1)、(row, col + 1) 和 (row + 1, col + 1) 三个单元格中任一满足值 严格 大于当前单元格的单元格。
返回你在矩阵中能够 移动 的 最大 次数。

示例 1:

输入:grid = [[2,4,3,5],[5,4,9,3],[3,4,2,11],[10,9,13,15]]
输出:3
解释:可以从单元格 (0, 0) 开始并且按下面的路径移动:
- (0, 0) -> (0, 1).
- (0, 1) -> (1, 2).
- (1, 2) -> (2, 3).
可以证明这是能够移动的最大次数。

示例 2:

输入:grid = [[3,2,4],[2,1,9],[1,1,7]]
输出:0
解释:从第一列的任一单元格开始都无法移动。

说明:

  • m == grid.length
  • n == grid[i].length
  • 2 <= m, n <= 1000
  • 4 <= m * n <= 10^5
  • 1 <= grid[i][j] <= 10^6

思路

题目要我们求从矩阵第一列出发的最大移动次数。当前单元格可以移动到其后面一列的上中下三格,如果相应位置的值大于当前元素的话。

这道题可以使用动态规划来做,虽然重叠的子问题不多。从右向左,从下到上/从上到下,计算每个单元格可以移动的最大次数。然后求第一列的最大值即可。

值得注意的是这种列在外层从右向左的循环方式。如果像平时那样外层行循环内层列循环,那么写状态转移方程时,子问题可能还未计算。

官网题解给的是广度优先搜索的方法,遍历第一列起点,将能到达的第二列的格子加入集合,然后遍历这些格子,如此反复直到无法继续或者到达矩阵最大边界n-1。

代码

/**
 * @date 2024-03-16 15:08
 */
public class MaxMoves {

    public int maxMoves(int[][] grid) {
        int[][] dp = new int[grid.length][];
        for (int i = 0; i < grid.length; i++) {
            dp[i] = new int[grid[i].length];
        }
        int res = 0;
        int i = grid.length - 1;
        for (int j = grid[i].length - 2; j >= 0; j--) {
            i = grid.length - 1;
            for (; i >= 0; i--) {
                if (i != 0 && grid[i][j] < grid[i - 1][j + 1]) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - 1][j + 1] + 1);
                }
                if (grid[i][j] < grid[i][j + 1]) {
                    dp[i][j] = Math.max(dp[i][j], dp[i][j + 1] + 1);
                }
                if (i != grid.length - 1 && grid[i][j] < grid[i + 1][j + 1]) {
                    dp[i][j] = Math.max(dp[i][j], dp[i + 1][j + 1] + 1);
                }
                if (j == 0){
                    res = Math.max(res, dp[i][0]);
                }
            }
        }
        return res;
    }

    public static void main(String[] args) {
        MaxMoves main = new MaxMoves();
        System.out.println(main.maxMoves(new int[][]{{2, 4, 3, 5}, {5, 4, 9, 3}, {3, 4, 2, 11}, {10, 9, 13, 15}}));
    }
}

性能

网友的题解还有网格DFS(2ms)、BFS(6ms)。虽然时间复杂度都是O(mn),但是性能差别还是挺大的。有时间可以分析一下,性能到底差在哪里。先不追求性能100%了,先以最快的速度将题过一遍。

1261.在受污染的二叉树中查找元素

目标

给出一个满足下述规则的二叉树:

  1. root.val == 0
  2. 如果 treeNode.val == x 且 treeNode.left != null,那么 treeNode.left.val == 2 * x + 1
  3. 如果 treeNode.val == x 且 treeNode.right != null,那么 treeNode.right.val == 2 * x + 2

现在这个二叉树受到「污染」,所有的 treeNode.val 都变成了 -1。

请你先还原二叉树,然后实现 FindElements 类:

  • FindElements(TreeNode* root) 用受污染的二叉树初始化对象,你需要先把它还原。
  • bool find(int target) 判断目标值 target 是否存在于还原后的二叉树中并返回结果。

说明:

  • TreeNode.val == -1
  • 二叉树的高度不超过 20
  • 节点的总数在 [1, 10^4] 之间
  • 调用 find() 的总次数在 [1, 10^4] 之间
  • 0 <= target <= 10^6

思路

dfs还原节点val,并将其加入到Hash表中,直接contains判断。

这个题被标为medium,估计是想让我们自己实现Hash表来查找元素吧。

代码

/**
 * @date 2024-03-12 2:41
 */
public class FindElements {
    Set<Integer> elements;

    public FindElements(TreeNode root) {
        elements = new HashSet<>();
        recover(root, 0);
    }

    public void recover(TreeNode root, int value) {
        if (root == null) {
            return;
        }
        root.val = value;
        elements.add(value);
        recover(root.left, 2 * value + 1);
        recover(root.right, 2 * value + 2);
    }

    public boolean find(int target) {
        return elements.contains(target);
    }
}

性能

299.猜数字游戏

目标

你在和朋友一起玩 猜数字(Bulls and Cows)游戏,该游戏规则如下:

写出一个秘密数字,并请朋友猜这个数字是多少。朋友每猜测一次,你就会给他一个包含下述信息的提示:

  • 猜测数字中有多少位属于数字和确切位置都猜对了(称为 "Bulls",公牛),
  • 有多少位属于数字猜对了但是位置不对(称为 "Cows",奶牛)。也就是说,这次猜测中有多少位非公牛数字可以通过重新排列转换成公牛数字。

给你一个秘密数字 secret 和朋友猜测的数字 guess ,请你返回对朋友这次猜测的提示。

提示的格式为 "xAyB" ,x 是公牛个数, y 是奶牛个数,A 表示公牛,B 表示奶牛。

请注意秘密数字和朋友猜测的数字都可能含有重复数字。

示例 1:

输入:secret = "1807", guess = "7810"
输出:"1A3B"
解释:数字和位置都对(公牛)用 '|' 连接,数字猜对位置不对(奶牛)的采用斜体加粗标识。
"1807"
  |
"7810"

示例 2:

输入:secret = "1123", guess = "0111"
输出:"1A1B"
解释:数字和位置都对(公牛)用 '|' 连接,数字猜对位置不对(奶牛)的采用斜体加粗标识。
"1123"        "1123"
  |      or     |
"0111"        "0111"
注意,两个不匹配的 1 中,只有一个会算作奶牛(数字猜对位置不对)。通过重新排列非公牛数字,其中仅有一个 1 可以成为公牛数字。

说明:

  • 1 <= secret.length, guess.length <= 1000
  • secret.length == guess.length
  • secret 和 guess 仅由数字组成

思路

这个题目的算法还是挺直接的,就是比较相应位置上的数字是否一致,如果一致bulls加1,否则就要累加错误数字的出现次数,但最多不能超过其在secret中的个数。

代码

/**
 * @date 2024-03-10 0:36
 */
public class GetHint {
    public String getHint(String secret, String guess) {
        int bulls = 0;
        int cows = 0;
        char[] secretCharArray = secret.toCharArray();
        int[] missArray = new int[10];
        int[] cowsArray = new int[10];
        for (int i = 0; i < secretCharArray.length; i++) {
            int guessCharacter = guess.charAt(i) - '0';
            int secretCharacter = secretCharArray[i] - '0';
            if (guessCharacter == secretCharacter) {
                bulls++;
            } else {
                missArray[secretCharacter] += 1;
                cowsArray[guessCharacter] += 1;
            }
        }
        for (int i = 0; i < cowsArray.length; i++) {
            if (missArray[i] > 0 && cowsArray[i] > 0) {
                cows += Math.min(missArray[i], cowsArray[i]);
            }
        }
        StringBuilder sb = new StringBuilder();
        return sb.append(bulls).append('A').append(cows).append('B').toString();
    }
}

这里面有几点需要注意:

  1. 数组只需要保留0-9十个数字即可
  2. 数字字符减去'0'可以得到对应的整型数字
  3. 不要使用加号拼接返回的结果,因为每一次字符串的修改都会创建新的对象,会显著影响性能

性能

2834.找出美丽数组的最小和

目标

给你两个正整数:n 和 target 。

如果数组 nums 满足下述条件,则称其为 美丽数组 。

  • nums.length == n.
  • nums 由两两互不相同的正整数组成。
  • 在范围 [0, n-1] 内,不存在 两个 不同 下标 i 和 j ,使得 nums[i] + nums[j] == target 。

返回符合条件的美丽数组所可能具备的 最小 和,并对结果进行取模 10^9 + 7。

示例 1:

输入:n = 2, target = 3
输出:4
解释:nums = [1,3] 是美丽数组。
- nums 的长度为 n = 2 。
- nums 由两两互不相同的正整数组成。
- 不存在两个不同下标 i 和 j ,使得 nums[i] + nums[j] == 3 。
可以证明 4 是符合条件的美丽数组所可能具备的最小和。

示例 2:

输入:n = 3, target = 3
输出:8
解释:
nums = [1,3,4] 是美丽数组。 
- nums 的长度为 n = 3 。 
- nums 由两两互不相同的正整数组成。 
- 不存在两个不同下标 i 和 j ,使得 nums[i] + nums[j] == 3 。
可以证明 8 是符合条件的美丽数组所可能具备的最小和。

示例 3:

输入:n = 1, target = 1
输出:1
解释:nums = [1] 是美丽数组。

说明:

  • 1 <= n <= 10*9
  • 1 <= target <= 10^9

思路

首先,美丽数组一个长度为n的数组,数组中的元素均不相同且为正整数,且任意两个元素之后不能等于target。

我们需要寻找所有可能的美丽数组中,所有元素和最小的那一个。并返回这个最小和。

如何才能使元素和最小?

很明显应该是从1开始的正整数序列,但是这个序列中的值相加不能等于target。

那么本质上是要求 1______mid~~~~~~target______这一序列的值,其中~~~~~~区间的值应舍去,因为会与前面的相加得到target。

刚开始想的是循环遍历 [1, n) 累加和,并记录target - i,如果遍历的过程中遇到了就直接跳过,但是提交后提示超出内存限制。于是进行修改,不保存不符合条件的元素,直接根据下标来判断,这次提示超时。

然后尝试不使用循环,直接使用等差数列求和公式计算,结果整型溢出。需要注意运算符优先级高的会先计算,如果没有显式地类型转换就会溢出,并且隐式类型转化使用的是溢出后的值。

代码

/**
 * @date 2024-03-08 9:00
 */
public class MinimumPossibleSum {

    public final int MOD = 1000000007;

    public int minimumPossibleSum(int n, int target) {
        int mid;
        mid = target / 2;
        if (n <= mid) {
            return (int) ((n + n * (n - 1L) / 2L) % MOD);
        } else {
            int r = n - mid;
            return (int) (((mid + mid * (mid - 1L) / 2L) + (long) target * r + r * (r - 1L) / 2L) % MOD);
        }
    }
}

性能