2360.图中的最长环

目标

给你一个 n 个节点的 有向图 ,节点编号为 0 到 n - 1 ,其中每个节点 至多 有一条出边。

图用一个大小为 n 下标从 0 开始的数组 edges 表示,节点 i 到节点 edges[i] 之间有一条有向边。如果节点 i 没有出边,那么 edges[i] == -1 。

请你返回图中的 最长 环,如果没有任何环,请返回 -1 。

一个环指的是起点和终点是 同一个 节点的路径。

示例 1:

输入:edges = [3,3,4,2,3]
输出去:3
解释:图中的最长环是:2 -> 4 -> 3 -> 2 。
这个环的长度为 3 ,所以返回 3 。

示例 2:

输入:edges = [2,-1,3,1]
输出:-1
解释:图中没有任何环。

说明:

  • n == edges.length
  • 2 <= n <= 10^5
  • -1 <= edges[i] < n
  • edges[i] != i

思路

//todo

代码

性能

2612.最少翻转操作数

目标

给你一个整数 n 和一个在范围 [0, n - 1] 以内的整数 p ,它们表示一个长度为 n 且下标从 0 开始的数组 arr ,数组中除了下标为 p 处是 1 以外,其他所有数都是 0 。

同时给你一个整数数组 banned ,它包含数组中的一些位置。banned 中第 i 个位置表示 arr[banned[i]] = 0 ,题目保证 banned[i] != p 。

你可以对 arr 进行 若干次 操作。一次操作中,你选择大小为 k 的一个 子数组 ,并将它 翻转 。在任何一次翻转操作后,你都需要确保 arr 中唯一的 1 不会到达任何 banned 中的位置。换句话说,arr[banned[i]] 始终 保持 0 。

请你返回一个数组 ans ,对于 [0, n - 1] 之间的任意下标 i ,ans[i] 是将 1 放到位置 i 处的 最少 翻转操作次数,如果无法放到位置 i 处,此数为 -1 。

  • 子数组 指的是一个数组里一段连续 非空 的元素序列。
  • 对于所有的 i ,ans[i] 相互之间独立计算。
  • 将一个数组中的元素 翻转 指的是将数组中的值变成 相反顺序 。

示例 1:

输入:n = 4, p = 0, banned = [1,2], k = 4
输出:[0,-1,-1,1]
解释:k = 4,所以只有一种可行的翻转操作,就是将整个数组翻转。一开始 1 在位置 0 处,所以将它翻转到位置 0 处需要的操作数为 0 。
我们不能将 1 翻转到 banned 中的位置,所以位置 1 和 2 处的答案都是 -1 。
通过一次翻转操作,可以将 1 放到位置 3 处,所以位置 3 的答案是 1 。

示例 2:

输入:n = 5, p = 0, banned = [2,4], k = 3
输出:[0,-1,-1,-1,-1]
解释:这个例子中 1 一开始在位置 0 处,所以此下标的答案为 0 。
翻转的子数组长度为 k = 3 ,1 此时在位置 0 处,所以我们可以翻转子数组 [0, 2],但翻转后的下标 2 在 banned 中,所以不能执行此操作。
由于 1 没法离开位置 0 ,所以其他位置的答案都是 -1 。

示例 3:

输入:n = 4, p = 2, banned = [0,1,3], k = 1
输出:[-1,-1,0,-1]
解释:这个例子中,我们只能对长度为 1 的子数组执行翻转操作,所以 1 无法离开初始位置。

说明:

  • 1 <= n <= 10^5
  • 0 <= p <= n - 1
  • 0 <= banned.length <= n - 1
  • 0 <= banned[i] <= n - 1
  • 1 <= k <= n
  • banned[i] != p
  • banned 中的值 互不相同 。

思路

// todo

代码

性能

2272.最大波动的子字符串

目标

字符串的 波动 定义为子字符串中出现次数 最多 的字符次数与出现次数 最少 的字符次数之差。

给你一个字符串 s ,它只包含小写英文字母。请你返回 s 里所有 子字符串的 最大波动 值。

子字符串 是一个字符串的一段连续字符序列。

示例 1:

输入:s = "aababbb"
输出:3
解释:
所有可能的波动值和它们对应的子字符串如以下所示:
- 波动值为 0 的子字符串:"a" ,"aa" ,"ab" ,"abab" ,"aababb" ,"ba" ,"b" ,"bb" 和 "bbb" 。
- 波动值为 1 的子字符串:"aab" ,"aba" ,"abb" ,"aabab" ,"ababb" ,"aababbb" 和 "bab" 。
- 波动值为 2 的子字符串:"aaba" ,"ababbb" ,"abbb" 和 "babb" 。
- 波动值为 3 的子字符串 "babbb" 。
所以,最大可能波动值为 3 。

示例 2:

输入:s = "abcde"
输出:0
解释:
s 中没有字母出现超过 1 次,所以 s 中每个子字符串的波动值都是 0 。

说明:

  • 1 <= s.length <= 10^4
  • s 只包含小写英文字母。

思路

//todo

代码

性能

2234.花园的最大总美丽值

目标

Alice 是 n 个花园的园丁,她想通过种花,最大化她所有花园的总美丽值。

给你一个下标从 0 开始大小为 n 的整数数组 flowers ,其中 flowers[i] 是第 i 个花园里已经种的花的数目。已经种了的花 不能 移走。同时给你 newFlowers ,表示 Alice 额外可以种花的 最大数目 。同时给你的还有整数 target ,full 和 partial 。

如果一个花园有 至少 target 朵花,那么这个花园称为 完善的 ,花园的 总美丽值 为以下分数之 和 :

  • 完善 花园数目乘以 full.
  • 剩余 不完善 花园里,花的 最少数目 乘以 partial 。如果没有不完善花园,那么这一部分的值为 0 。

请你返回 Alice 种最多 newFlowers 朵花以后,能得到的 最大 总美丽值。

示例 1:

输入:flowers = [1,3,1,1], newFlowers = 7, target = 6, full = 12, partial = 1
输出:14
解释:Alice 可以按以下方案种花
- 在第 0 个花园种 2 朵花
- 在第 1 个花园种 3 朵花
- 在第 2 个花园种 1 朵花
- 在第 3 个花园种 1 朵花
花园里花的数目为 [3,6,2,2] 。总共种了 2 + 3 + 1 + 1 = 7 朵花。
只有 1 个花园是完善的。
不完善花园里花的最少数目是 2 。
所以总美丽值为 1 * 12 + 2 * 1 = 12 + 2 = 14 。
没有其他方案可以让花园总美丽值超过 14 。

示例 2:

输入:flowers = [2,4,5,3], newFlowers = 10, target = 5, full = 2, partial = 6
输出:30
解释:Alice 可以按以下方案种花
- 在第 0 个花园种 3 朵花
- 在第 1 个花园种 0 朵花
- 在第 2 个花园种 0 朵花
- 在第 3 个花园种 2 朵花
花园里花的数目为 [5,4,5,5] 。总共种了 3 + 0 + 0 + 2 = 5 朵花。
有 3 个花园是完善的。
不完善花园里花的最少数目为 4 。
所以总美丽值为 3 * 2 + 4 * 6 = 6 + 24 = 30 。
没有其他方案可以让花园总美丽值超过 30 。
注意,Alice可以让所有花园都变成完善的,但这样她的总美丽值反而更小。

说明:

  • 1 <= flowers.length <= 10^5
  • 1 <= flowers[i], target <= 10^5
  • 1 <= newFlowers <= 10^10
  • 1 <= full, partial <= 10^5

思路

有一个整数数组 flowersflowers[i] 表示下标为 i 的花园种植的花的数目。花园的美丽值通过以下方式计算:

  • 花园中花的数目大于等于 target,称该花园是完善的,美丽值 = 所有完善花园的个数 * full
  • 花园中花的数目小于 target,美丽值 = 所有花园中花的最小数目 * partial

Alice 可以向任意花园中种花,新种的花的数目不超过 newFlowers,求花园的最大美丽值。

// todo

代码

性能

1745.分割回文串IV

目标

给你一个字符串 s ,如果可以将它分割成三个 非空 回文子字符串,那么返回 true ,否则返回 false 。

当一个字符串正着读和反着读是一模一样的,就称其为 回文字符串 。

示例 1:

输入:s = "abcbdd"
输出:true
解释:"abcbdd" = "a" + "bcb" + "dd",三个子字符串都是回文的。

示例 2:

输入:s = "bcbddxy"
输出:false
解释:s 没办法被分割成 3 个回文子字符串。

说明:

  • 3 <= s.length <= 2000
  • s​​​​​​ 只包含小写英文字母。

思路

判断能否将给定字符串分割成三个非空回文子串。

核心逻辑:

  • 计算所有子串是否是回文。
  • 从起点 i = 0 开始,枚举所有终点 j,如果是 s[i~j] 是回文,k-- 接着以 j + 1 为起点继续递归搜索。
  • 结束条件是 i == s.length() || k < 0,如果 k == 0 返回 true。

代码


/**
 * @date 2025-03-04 15:58
 */
public class CheckPartitioning1745 {

    public boolean checkPartitioning(String s) {
        int n = s.length();
        boolean[][] isPalindrome = new boolean[n][n];
        for (boolean[] row : isPalindrome) {
            Arrays.fill(row, true);
        }
        for (int i = n - 2; i >= 0; i--) {
            for (int j = i + 1; j < n; j++) {
                isPalindrome[i][j] = s.charAt(i) == s.charAt(j) && isPalindrome[i + 1][j - 1];
            }
        }
        char[][] mem = new char[n][4];
        return dfs(0, 3, isPalindrome, s, mem);
    }

    public boolean dfs(int i, int k, boolean[][] isPalindrome, String s, char[][] mem) {
        int n = s.length();
        if (i == n || k < 0) {
            return k == 0;
        }
        if (mem[i][k] != '\u0000') {
            return mem[i][k] == 'T';
        }
        boolean res = false;
        for (int j = i; j < n; j++) {
            if (isPalindrome[i][j]) {
                res = res || dfs(j + 1, k - 1, isPalindrome, s, mem);
            }
        }
        mem[i][k] = res ? 'T' : 'F';
        return res;
    }

}

性能

1278.分割回文串III

目标

给你一个由小写字母组成的字符串 s,和一个整数 k。

请你按下面的要求分割字符串:

  • 首先,你可以将 s 中的部分字符修改为其他的小写英文字母。
  • 接着,你需要把 s 分割成 k 个非空且不相交的子串,并且每个子串都是回文串。

请返回以这种方式分割字符串所需修改的最少字符数。

示例 1:

输入:s = "abc", k = 2
输出:1
解释:你可以把字符串分割成 "ab" 和 "c",并修改 "ab" 中的 1 个字符,将它变成回文串。

示例 2:

输入:s = "aabbc", k = 3
输出:0
解释:你可以把字符串分割成 "aa"、"bb" 和 "c",它们都是回文串。

示例 3:

输入:s = "leetcode", k = 8
输出:0

说明:

  • 1 <= k <= s.length <= 100
  • s 中只含有小写英文字母。

思路

将字符串 s 分割成 k 个非空回文子串,允许修改字符中的任意字符,求修改字符的最小次数。

需要将字符串分割成 k 份并且每一份都是回文。我们需要暴力枚举所有可能的分法,并求得每种分法的修改次数,取其最小值。

核心逻辑:

  • 计算所有子串变为回文的修改次数,ops[i][j] = s.charAt(i) == s.charAt(j) ? ops[i + 1][j - 1] : ops[i + 1][j - 1] + 1;。由于需要从 i + 1 转移过来,所以外层倒序。初始化数组所有值为 0,外层从倒数第二个开始,内层从 i + 1 开始。
  • 从起点 i = 0 开始,枚举所有终点 j,无论 s[i~j] 是否是回文,我们直接加上 ops[i][j]k-- 接着以 j + 1 为起点继续递归搜索。
  • 结束条件:
    • i 未到结尾 k 先减为 0,不符合要求,返回 INF,可以取 0x3f3f3f3f
    • i == s.length(),如果 k == 0 返回 0,否则说明分割的子串没有 k 个,不符合题意返回 INF

代码


/**
 * @date 2025-03-03 8:52
 */
public class PalindromePartition1278 {

    public int palindromePartition(String s, int k) {
        int n = s.length();
        int[][] ops = new int[n][n];
        for (int i = n - 2; i >= 0; i--) {
            for (int j = i + 1; j < n; j++) {
                ops[i][j] = s.charAt(i) == s.charAt(j) ? ops[i + 1][j - 1] : ops[i + 1][j - 1] + 1;
            }
        }
        int[][] mem = new int[n][k + 1];
        for (int[] row : mem) {
            Arrays.fill(row, -1);
        }
        return dfs(0, k, s, ops, mem);
    }

    public int dfs(int i, int k, String s, int[][] ops, int[][] mem) {
        int n = s.length();
        if (i == n) {
            return k > 0 ? 0x3f3f3f3f : 0;
        }
        if (k == 0) {
            return 0x3f3f3f3f;
        }
        if (mem[i][k] != -1) {
            return mem[i][k];
        }
        int res = Integer.MAX_VALUE;
        for (int j = i; j < n; j++) {
            res = Math.min(res, ops[i][j] + dfs(j + 1, k - 1, s, ops, mem));
        }
        mem[i][k] = res;
        return res;
    }

}

性能

132.分割回文串II

目标

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是回文串。

返回符合要求的 最少分割次数 。

示例 1:

输入:s = "aab"
输出:1
解释:只需一次分割就可将 s 分割成 ["aa","b"] 这样两个回文子串。

示例 2:

输入:s = "a"
输出:0

示例 3:

输入:s = "ab"
输出:1

说明:

  • 1 <= s.length <= 2000
  • s 仅由小写英文字母组成

思路

计算将字符串分割成回文子串的最小分割次数。

定义 dp[i] 表示前 i + 1 个字符的最小分割次数,如果 [0, i] 个字符已经是回文,无需切割,切割次数为 0。否则,需要枚举起点 j,如果 [j, i] 是回文,dp[i] = Math.min(dp[j - 1] + 1)

预处理 [i, j] 是否是回文,isPalindrome[i][j] = s.charAt(i) == s.charAt(j) && isPalindrome[i + 1][j - 1],由于状态由 i + 1 转换而来,外层要倒序,内层正序或倒序都可以。

代码


/**
 * @date 2025-03-02 0:10
 */
public class MinCut132 {

    public int minCut(String s) {
        int n = s.length();
        boolean[][] isPalindrome = new boolean[n][n];
        for (boolean[] row : isPalindrome) {
            Arrays.fill(row, true);
        }
        for (int i = n - 2; i >= 0; i--) {
            for (int j = i + 1; j < n; j++) {
                isPalindrome[i][j] = s.charAt(i) == s.charAt(j) && isPalindrome[i + 1][j - 1];
            }
        }
        int[] dp = new int[n];
        for (int i = 0; i < n; i++) {
            if (isPalindrome[0][i]) {
                continue;
            }
            int res = Integer.MAX_VALUE;
            for (int j = 1; j <= i; j++) {
                if (isPalindrome[j][i]) {
                    res = Math.min(res, dp[j - 1] + 1);
                }
            }
            dp[i] = res;
        }
        return dp[n - 1];
    }

}

性能

2296.设计一个文本编辑器

目标

请你设计一个带光标的文本编辑器,它可以实现以下功能:

  • 添加:在光标所在处添加文本。
  • 删除:在光标所在处删除文本(模拟键盘的删除键)。
  • 移动:将光标往左或者往右移动。

当删除文本时,只有光标左边的字符会被删除。光标会留在文本内,也就是说任意时候 0 <= cursor.position <= currentText.length 都成立。

请你实现 TextEditor 类:

  • TextEditor() 用空文本初始化对象。
  • void addText(string text) 将 text 添加到光标所在位置。添加完后光标在 text 的右边。
  • int deleteText(int k) 删除光标左边 k 个字符。返回实际删除的字符数目。
  • string cursorLeft(int k) 将光标向左移动 k 次。返回移动后光标左边 min(10, len) 个字符,其中 len 是光标左边的字符数目。
  • string cursorRight(int k) 将光标向右移动 k 次。返回移动后光标左边 min(10, len) 个字符,其中 len 是光标左边的字符数目。

示例 1:

输入:
["TextEditor", "addText", "deleteText", "addText", "cursorRight", "cursorLeft", "deleteText", "cursorLeft", "cursorRight"]
[[], ["leetcode"], [4], ["practice"], [3], [8], [10], [2], [6]]
输出:
[null, null, 4, null, "etpractice", "leet", 4, "", "practi"]

解释:
TextEditor textEditor = new TextEditor(); // 当前 text 为 "|" 。('|' 字符表示光标)
textEditor.addText("leetcode"); // 当前文本为 "leetcode|" 。
textEditor.deleteText(4); // 返回 4
                          // 当前文本为 "leet|" 。
                          // 删除了 4 个字符。
textEditor.addText("practice"); // 当前文本为 "leetpractice|" 。
textEditor.cursorRight(3); // 返回 "etpractice"
                           // 当前文本为 "leetpractice|". 
                           // 光标无法移动到文本以外,所以无法移动。
                           // "etpractice" 是光标左边的 10 个字符。
textEditor.cursorLeft(8); // 返回 "leet"
                          // 当前文本为 "leet|practice" 。
                          // "leet" 是光标左边的 min(10, 4) = 4 个字符。
textEditor.deleteText(10); // 返回 4
                           // 当前文本为 "|practice" 。
                           // 只有 4 个字符被删除了。
textEditor.cursorLeft(2); // 返回 ""
                          // 当前文本为 "|practice" 。
                          // 光标无法移动到文本以外,所以无法移动。
                          // "" 是光标左边的 min(10, 0) = 0 个字符。
textEditor.cursorRight(6); // 返回 "practi"
                           // 当前文本为 "practi|ce" 。
                           // "practi" 是光标左边的 min(10, 6) = 6 个字符。

说明:

  • 1 <= text.length, k <= 40
  • text 只含有小写英文字母。
  • 调用 addText ,deleteText ,cursorLeft 和 cursorRight 的 总 次数不超过 2 * 10^4 次。

进阶:你能设计并实现一个每次调用时间复杂度为 O(k) 的解决方案吗?

提示:

  • Making changes in the middle of some data structures is generally harder than changing the front/back of the same data structure.
  • Can you partition your data structure (text with cursor) into two parts, such that each part changes only near its ends?
  • Can you think of a data structure that supports efficient removals/additions to the front/back?
  • Try to solve the problem with two deques by maintaining the prefix and the suffix separately.

思路

设计一个文本编辑器,支持光标左右移动,在光标位置添加字符,删除光标左侧字符的功能。光标移动返回移动后,光标左侧的最多 10 个字符。删除字符返回实际删除的字符个数。

难点在于如何在 buffer 中间插入文本。

暴力解法就是将后面的字符平移,最坏的情况下,操作序列是add,左移,add,左移,……,那么总共移动的字符个数应该是 text.length * q * (q-1) / 2q 是插入操作次数,插入最多 10^4,文本最大 40,大概 2 * 10^9,这样的复杂度竟然没有超时。

进阶的做法是使用对顶栈,使用两个栈,一个保存光标左侧字符,一个保存光标右侧字符。

prefix 0 ------> top | top <------ 0 suffix。光标左移就将左边的栈顶压到右边,右移反之。

StringBuilder 相关API:

  • 使用 setLength 快速删除后缀
  • 使用 charAt 移动单个字符
  • 使用 substring 快速获取光标左边 10 个字符串

代码


/**
 * @date 2025-02-27 8:41
 */
public class TextEditor {

    StringBuilder prefix;
    StringBuilder suffix;

    public TextEditor() {
        prefix = new StringBuilder();
        suffix = new StringBuilder();
    }

    public void addText(String text) {
        prefix.append(text);
    }

    public int deleteText(int k) {
        int remainder = Math.max(0, prefix.length() - k);
        int cnt = prefix.length() - remainder;
        prefix.setLength(remainder);
        return cnt;
    }

    public String cursorLeft(int k) {
        while (k > 0 && prefix.length() > 0) {
            suffix.append(prefix.charAt(prefix.length() - 1));
            prefix.setLength(prefix.length() - 1);
            k--;
        }
        return prefix.substring(Math.max(prefix.length() - 10, 0));
    }

    public String cursorRight(int k) {
        while (k > 0 && suffix.length() > 0) {
            prefix.append(suffix.charAt(suffix.length() - 1));
            suffix.setLength(suffix.length() - 1);
            k--;
        }
        return prefix.substring(Math.max(prefix.length() - 10, 0));
    }
}

性能

1206.设计跳表

目标

不使用任何库函数,设计一个 跳表 。

跳表 是在 O(log(n)) 时间内完成增加、删除、搜索操作的数据结构。跳表相比于树堆与红黑树,其功能与性能相当,并且跳表的代码长度相较下更短,其设计思想与链表相似。

例如,一个跳表包含 [30, 40, 50, 60, 70, 90] ,然后增加 80、45 到跳表中,以下图的方式操作:

跳表中有很多层,每一层是一个短的链表。在第一层的作用下,增加、删除和搜索操作的时间复杂度不超过 O(n)。跳表的每一个操作的平均时间复杂度是 O(log(n)),空间复杂度是 O(n)。

了解更多 : https://oi-wiki.org/ds/skiplist/

在本题中,你的设计应该要包含这些函数:

  • bool search(int target) : 返回target是否存在于跳表中。
  • void add(int num): 插入一个元素到跳表。
  • bool erase(int num): 在跳表中删除一个值,如果 num 不存在,直接返回false. 如果存在多个 num ,删除其中任意一个即可。

注意,跳表中可能存在多个相同的值,你的代码需要处理这种情况。

示例 1:

输入
["Skiplist", "add", "add", "add", "search", "add", "search", "erase", "erase", "search"]
[[], [1], [2], [3], [0], [4], [1], [0], [1], [1]]
输出
[null, null, null, null, false, null, true, false, true, false]

解释
Skiplist skiplist = new Skiplist();
skiplist.add(1);
skiplist.add(2);
skiplist.add(3);
skiplist.search(0);   // 返回 false
skiplist.add(4);
skiplist.search(1);   // 返回 true
skiplist.erase(0);    // 返回 false,0 不在跳表中
skiplist.erase(1);    // 返回 true
skiplist.search(1);   // 返回 false,1 已被擦除

说明:

  • 0 <= num, target <= 2 * 10^4
  • 调用search, add, erase操作次数不大于 5 * 10^4

思路

// todo

代码

性能

2209.用地毯覆盖后的最少白色砖块

目标

给你一个下标从 0 开始的 二进制 字符串 floor ,它表示地板上砖块的颜色。

  • floor[i] = '0' 表示地板上第 i 块砖块的颜色是 黑色 。
  • floor[i] = '1' 表示地板上第 i 块砖块的颜色是 白色 。

同时给你 numCarpets 和 carpetLen 。你有 numCarpets 条 黑色 的地毯,每一条 黑色 的地毯长度都为 carpetLen 块砖块。请你使用这些地毯去覆盖砖块,使得未被覆盖的剩余 白色 砖块的数目 最小 。地毯相互之间可以覆盖。

请你返回没被覆盖的白色砖块的 最少 数目。

示例 1:

输入:floor = "10110101", numCarpets = 2, carpetLen = 2
输出:2
解释:
上图展示了剩余 2 块白色砖块的方案。
没有其他方案可以使未被覆盖的白色砖块少于 2 块。

示例 2:

输入:floor = "11111", numCarpets = 2, carpetLen = 3
输出:0
解释:
上图展示了所有白色砖块都被覆盖的一种方案。
注意,地毯相互之间可以覆盖。

说明:

  • 1 <= carpetLen <= floor.length <= 1000
  • floor[i] 要么是 '0' ,要么是 '1' 。
  • 1 <= numCarpets <= 1000

思路

floor.length 块一字排列的砖,floor[i] 的值表示砖的颜色,0 代表黑色,1 代表白色。另有 numCarpets 条长度为 carpetLen 的地毯。求使用地毯覆盖砖块剩余 白色 砖块的最小数目。

假设白色砖块有 k 个,那么可行的方案数有 C(k, numCarpets) 种,即选 k 块白砖为起点覆盖地毯。

//todo

代码

性能