135.分发糖果

目标

n 个孩子站成一排。给你一个整数数组 ratings 表示每个孩子的评分。

你需要按照以下要求,给这些孩子分发糖果:

  • 每个孩子至少分配到 1 个糖果。
  • 相邻两个孩子评分更高的孩子会获得更多的糖果。

请你给每个孩子分发糖果,计算并返回需要准备的 最少糖果数目 。

示例 1:

输入:ratings = [1,0,2]
输出:5
解释:你可以分别给第一个、第二个、第三个孩子分发 2、1、2 颗糖果。

示例 2:

输入:ratings = [1,2,2]
输出:4
解释:你可以分别给第一个、第二个、第三个孩子分发 1、2、1 颗糖果。
     第三个孩子只得到 1 颗糖果,这满足题面中的两个条件。

说明:

  • n == ratings.length
  • 1 <= n <= 2 * 10^4
  • 0 <= ratings[i] <= 2 * 10^4

思路

n 个孩子站成一排,ratings 表示每个孩子的评分。现在需要给孩子分发糖果,要求每个孩子至少分配一个糖果,并且相邻的两个孩子,评分高的孩子分得的糖果大于评分低的孩子分得的糖果,返回需要准备的最少糖果数目。

官网题解提供了一种常数空间复杂度的写法,记录评分严格递增与严格递减序列长度:

  • 当处于严格递增序列时,分配的糖果比前面的多一个即可
  • 如果评分相同,则分配一个糖果并重置序列长度
  • 当处于严格递减序列时,分配递减序列长度个糖果,相当于递增序列的逆过程
  • 需要特殊处理递增序列与递减序列长度相同的情况

看下面的例子:

评分 4 5 4 3 2 1,
    a b c d e f
    1 2 1
当处理到 c 时,处于下降序列,我们给他分配 1 个糖果
    1 3 2 1
当处理到 d 时,仍处于下降序列,需要给 c 多分配一个糖果,即 2 个,发现这时与 b 分配的相同,不满足要求,需要给 b 也多分配一个,共 3 个
    1 4 3 2 1
当处理到 e 时,仍处于下降序列,需要给 b c d 多分配一个,共 4 个
    1 5 4 3 2 1
当处理到 f 时,仍处于下降序列,需要给 b c d e 多分配一个糖果,共 5 个

相当于往递减序列的头部插入递减序列长度个糖果,视为反向的递增,当递增序列与递减序列长度相同时需要特殊处理。

代码


/**
 * @date 2024-12-11 9:18
 */
public class Candy135 {

    public int candy_v3(int[] ratings) {
        int n = ratings.length;
        int increase = 1;
        int decrease = 0;
        int res = 1;
        int prev = 1;
        for (int i = 1; i < n; i++) {
            if (ratings[i] >= ratings[i - 1]) {
                prev = ratings[i] == ratings[i - 1] ? 1 : prev + 1;
                res += prev;
                increase = prev;
                decrease = 0;
            } else {
                decrease++;
                if (decrease == increase) {
                    decrease++;
                }
                res += decrease;
                prev = 1;
            }
        }
        return res;
    }

}

性能

3373.连接两棵树后最大目标节点数目II

目标

有两棵 无向 树,分别有 n 和 m 个树节点。两棵树中的节点编号分别为[0, n - 1] 和 [0, m - 1] 中的整数。

给你两个二维整数 edges1 和 edges2 ,长度分别为 n - 1 和 m - 1 ,其中 edges1[i] = [ai, bi] 表示第一棵树中节点 ai 和 bi 之间有一条边,edges2[i] = [ui, vi] 表示第二棵树中节点 ui 和 vi 之间有一条边。

如果节点 u 和节点 v 之间路径的边数是偶数,那么我们称节点 u 是节点 v 的 目标节点 。注意 ,一个节点一定是它自己的 目标节点 。

请你返回一个长度为 n 的整数数组 answer ,answer[i] 表示将第一棵树中的一个节点与第二棵树中的一个节点连接一条边后,第一棵树中节点 i 的 目标节点 数目的 最大值 。

注意 ,每个查询相互独立。意味着进行下一次查询之前,你需要先把刚添加的边给删掉。

示例 1:

输入:edges1 = [[0,1],[0,2],[2,3],[2,4]], edges2 = [[0,1],[0,2],[0,3],[2,7],[1,4],[4,5],[4,6]]
输出:[8,7,7,8,8]
解释:
对于 i = 0 ,连接第一棵树中的节点 0 和第二棵树中的节点 0 。
对于 i = 1 ,连接第一棵树中的节点 1 和第二棵树中的节点 4 。
对于 i = 2 ,连接第一棵树中的节点 2 和第二棵树中的节点 7 。
对于 i = 3 ,连接第一棵树中的节点 3 和第二棵树中的节点 0 。
对于 i = 4 ,连接第一棵树中的节点 4 和第二棵树中的节点 4 。

示例 2:

输入:edges1 = [[0,1],[0,2],[0,3],[0,4]], edges2 = [[0,1],[1,2],[2,3]]
输出:[3,6,6,6,6]
解释:
对于每个 i ,连接第一棵树中的节点 i 和第二棵树中的任意一个节点。

提示:

  • 2 <= n, m <= 10^5
  • edges1.length == n - 1
  • edges2.length == m - 1
  • edges1[i].length == edges2[i].length == 2
  • edges1[i] = [ai, bi]
  • 0 <= ai, bi < n
  • edges2[i] = [ui, vi]
  • 0 <= ui, vi < m
  • 输入保证 edges1 和 edges2 都表示合法的树。

思路

有两棵树,当节点 ab 之间的边数为偶数时,称 ab 的目标节点,在两棵树任意节点之间连一条边,针对第一棵树的所有节点,计算其目标节点的最大个数。

3372.连接两棵树后最大目标节点数目I 相比,目标节点的条件从边数小于等于 k 变为了 偶数。

同一颗树中,某一个节点经过 偶数 或者 奇数条边到达的节点个数是固定的。不妨固定一个节点为根节点,经过 偶数 条边到达的节点集合为 A,经过 奇数 条边到达的节点集合为 B。集合 A 中节点的目标节点还是 A 中的节点,同理 B 中节点的目标节点还是 B 中的节点。

因此问题转化为计算两棵树的集合 A B,判断第一颗树的节点所属集合,如果属于 A,则取 A1 + Math.max(A2, B2),否则取 B1 + Math.max(A2, B2)。

核心点是固定一个参考节点,根据到达该节点的边数将节点分类,可以快速计算出目标节点个数,如果针对每一节点暴力搜索目标节点个数肯定会超时。

代码


/**
 * @date 2025-05-29 23:50
 */
public class MaxTargetNodes3373 {

    public int[] maxTargetNodes(int[][] edges1, int[][] edges2) {
        int n = edges1.length + 1;
        int m = edges2.length + 1;
        List<Integer>[] g1 = new List[n];
        List<Integer>[] g2 = new List[m];
        Arrays.setAll(g1, x -> new ArrayList<>());
        Arrays.setAll(g2, x -> new ArrayList<>());
        for (int[] edge : edges1) {
            int a = edge[0];
            int b = edge[1];
            g1[a].add(b);
            g1[b].add(a);
        }
        for (int[] edge : edges2) {
            int a = edge[0];
            int b = edge[1];
            g2[a].add(b);
            g2[b].add(a);
        }
        Set<Integer>[] set1 = new HashSet[2];
        Arrays.setAll(set1, x -> new HashSet<>());
        int[] set2 = new int[]{0, 0};
        dfs(0, -1, g1, 0, set1);
        dfs(0, -1, g2, 0, set2);
        int max2 = Math.max(set2[0], set2[1]);
        int[] res = new int[n];
        for (int i = 0; i < n; i++) {
            if (set1[0].contains(i)) {
                res[i] = set1[0].size() + max2;
            } else {
                res[i] = set1[1].size() + max2;
            }
        }
        return res;
    }

    public void dfs(int cur, int parent, List<Integer>[] g, int flag, Set<Integer>[] set) {
        set[flag].add(cur);
        for (Integer next : g[cur]) {
            if (next == parent) {
                continue;
            }
            dfs(next, cur, g, flag ^ 1, set);
        }
    }

    public void dfs(int cur, int parent, List<Integer>[] g, int flag, int[] res) {
        res[flag]++;
        for (Integer next : g[cur]) {
            if (next == parent) {
                continue;
            }
            dfs(next, cur, g, flag ^ 1, res);
        }
    }
}

性能

1857.有向图中最大颜色值

目标

给你一个 有向图 ,它含有 n 个节点和 m 条边。节点编号从 0 到 n - 1 。

给你一个字符串 colors ,其中 colors[i] 是小写英文字母,表示图中第 i 个节点的 颜色 (下标从 0 开始)。同时给你一个二维数组 edges ,其中 edges[j] = [aj, bj] 表示从节点 aj 到节点 bj 有一条 有向边 。

图中一条有效 路径 是一个点序列 x1 -> x2 -> x3 -> ... -> xk ,对于所有 1 <= i < k ,从 xi 到 xi+1 在图中有一条有向边。路径的 颜色值 是路径中 出现次数最多 颜色的节点数目。

请你返回给定图中有效路径里面的 最大颜色值 。如果图中含有环,请返回 -1 。

示例 1:

输入:colors = "abaca", edges = [[0,1],[0,2],[2,3],[3,4]]
输出:3
解释:路径 0 -> 2 -> 3 -> 4 含有 3 个颜色为 "a" 的节点(上图中的红色节点)。

示例 2:

输入:colors = "a", edges = [[0,0]]
输出:-1
解释:从 0 到 0 有一个环。

说明:

  • n == colors.length
  • m == edges.length
  • 1 <= n <= 10^5
  • 0 <= m <= 10^5
  • colors 只含有小写英文字母。
  • 0 <= aj, bj < n

思路

// 今天没空做了 todo

代码

性能

3068.最大节点价值之和

目标

给你一棵 n 个节点的 无向 树,节点从 0 到 n - 1 编号。树以长度为 n - 1 下标从 0 开始的二维整数数组 edges 的形式给你,其中 edges[i] = [ui, vi] 表示树中节点 ui 和 vi 之间有一条边。同时给你一个 正 整数 k 和一个长度为 n 下标从 0 开始的 非负 整数数组 nums ,其中 nums[i] 表示节点 i 的 价值 。

Alice 想 最大化 树中所有节点价值之和。为了实现这一目标,Alice 可以执行以下操作 任意 次(包括 0 次):

  • 选择连接节点 u 和 v 的边 [u, v] ,并将它们的值更新为:
    • nums[u] = nums[u] XOR k
    • nums[v] = nums[v] XOR k

请你返回 Alice 通过执行以上操作 任意次 后,可以得到所有节点 价值之和 的 最大值 。

示例 1:

输入:nums = [1,2,1], k = 3, edges = [[0,1],[0,2]]
输出:6
解释:Alice 可以通过一次操作得到最大价值和 6 :
- 选择边 [0,2] 。nums[0] 和 nums[2] 都变为:1 XOR 3 = 2 ,数组 nums 变为:[1,2,1] -> [2,2,2] 。
所有节点价值之和为 2 + 2 + 2 = 6 。
6 是可以得到最大的价值之和。

示例 2:

输入:nums = [2,3], k = 7, edges = [[0,1]]
输出:9
解释:Alice 可以通过一次操作得到最大和 9 :
- 选择边 [0,1] 。nums[0] 变为:2 XOR 7 = 5 ,nums[1] 变为:3 XOR 7 = 4 ,数组 nums 变为:[2,3] -> [5,4] 。
所有节点价值之和为 5 + 4 = 9 。
9 是可以得到最大的价值之和。

示例 3:

输入:nums = [7,7,7,7,7,7], k = 3, edges = [[0,1],[0,2],[0,3],[0,4],[0,5]]
输出:42
解释:Alice 不需要执行任何操作,就可以得到最大价值之和 42 。

说明:

  • 2 <= n == nums.length <= 2 * 10^4
  • 1 <= k <= 10^9
  • 0 <= nums[i] <= 10^9
  • edges.length == n - 1
  • edges[i].length == 2
  • 0 <= edges[i][0], edges[i][1] <= n - 1
  • 输入保证 edges 构成一棵合法的树。

思路

// todo

代码

性能

1931.用三种不同颜色为网格涂色

目标

给你两个整数 m 和 n 。构造一个 m x n 的网格,其中每个单元格最开始是白色。请你用 红、绿、蓝 三种颜色为每个单元格涂色。所有单元格都需要被涂色。

涂色方案需要满足:不存在相邻两个单元格颜色相同的情况 。返回网格涂色的方法数。因为答案可能非常大, 返回 对 10^9 + 7 取余 的结果。

示例 1:

输入:m = 1, n = 1
输出:3
解释:如上图所示,存在三种可能的涂色方案。

示例 2:

输入:m = 1, n = 2
输出:6
解释:如上图所示,存在六种可能的涂色方案。

示例 3:

输入:m = 5, n = 5
输出:580986

说明:

  • 1 <= m <= 5
  • 1 <= n <= 1000

思路

// todo 状压DP

代码

性能

3337.字符串转换后的长度II

目标

给你一个由小写英文字母组成的字符串 s,一个整数 t 表示要执行的 转换 次数,以及一个长度为 26 的数组 nums。每次 转换 需要根据以下规则替换字符串 s 中的每个字符:

  • 将 s[i] 替换为字母表中后续的 nums[s[i] - 'a'] 个连续字符。例如,如果 s[i] = 'a' 且 nums[0] = 3,则字符 'a' 转换为它后面的 3 个连续字符,结果为 "bcd"。
  • 如果转换超过了 'z',则 回绕 到字母表的开头。例如,如果 s[i] = 'y' 且 nums[24] = 3,则字符 'y' 转换为它后面的 3 个连续字符,结果为 "zab"。

返回 恰好 执行 t 次转换后得到的字符串的 长度。

由于答案可能非常大,返回其对 10^9 + 7 取余的结果。

示例 1:

输入: s = "abcyy", t = 2, nums = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2]
输出: 7
解释:
第一次转换 (t = 1)
'a' 变为 'b' 因为 nums[0] == 1
'b' 变为 'c' 因为 nums[1] == 1
'c' 变为 'd' 因为 nums[2] == 1
'y' 变为 'z' 因为 nums[24] == 1
'y' 变为 'z' 因为 nums[24] == 1
第一次转换后的字符串为: "bcdzz"
第二次转换 (t = 2)
'b' 变为 'c' 因为 nums[1] == 1
'c' 变为 'd' 因为 nums[2] == 1
'd' 变为 'e' 因为 nums[3] == 1
'z' 变为 'ab' 因为 nums[25] == 2
'z' 变为 'ab' 因为 nums[25] == 2
第二次转换后的字符串为: "cdeabab"
字符串最终长度: 字符串为 "cdeabab",长度为 7 个字符。

示例 2:

输入: s = "azbk", t = 1, nums = [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
输出: 8
解释:
第一次转换 (t = 1)
'a' 变为 'bc' 因为 nums[0] == 2
'z' 变为 'ab' 因为 nums[25] == 2
'b' 变为 'cd' 因为 nums[1] == 2
'k' 变为 'lm' 因为 nums[10] == 2
第一次转换后的字符串为: "bcabcdlm"
字符串最终长度: 字符串为 "bcabcdlm",长度为 8 个字符。

说明:

  • 1 <= s.length <= 10^5
  • s 仅由小写英文字母组成。
  • 1 <= t <= 10^9
  • nums.length == 26
  • 1 <= nums[i] <= 25

思路

对字符串执行 t 次转换,求字符串的最终长度。每次转换需要将字符 s[i] 转换为字母表中后面的 nums[s[i] - 'a'] 个连续字符,如果超过了 z 则回到字母表开头。

3335.字符串转换后的长度I 的区别是替换为后面的连续 nums[s[i] - 'a'] 个字符。

定义 dp[k][i] 表示第 k 次转换后,字符 (char)(i + 'a') 的出现次数。但是转换次数高达 10^9 会超出内存限制。

转换次数太大,必须想办法降低它的复杂度。想到了倍增与快速幂,可以使用矩阵描述每一次字符的转换,考虑矩阵快速幂。

定义矩阵 matrix 的第 i 行表示字母 (char)(i + 'a') 转换后的字符集合,使用行向量表示, 第 j 列为 1 表示转换后的字母为 (char)(j + 'a')。于是问题转换为 vector * matrix^t,其中 vector 表示字符串每个字符的出现次数。

代码


/**
 * @date 2025-05-14 8:56
 */
public class LengthAfterTransformations3337 {

    public int lengthAfterTransformations(String s, int t, List<Integer> nums) {
        int mod = 1000000007;
        int[] vector = new int[26];
        char[] chars = s.toCharArray();
        for (char c : chars) {
            vector[c - 'a']++;
        }
        int[][] matrix = new int[26][26];
        for (int i = 0; i < 26; i++) {
            for (int j = 1; j <= nums.get(i); j++) {
                int index = (i + j) % 26;
                matrix[i][index] = 1;
            }
        }
        int[] cnt = pow(vector, matrix, t, mod);
        int res = 0;
        for (int num : cnt) {
            res = (res + num) % mod;
        }
        return res;
    }

    public int[] pow(int[] vector, int[][] matrix, int exponent, int mod) {
        int[] res = vector;
        while (exponent > 0) {
            if ((exponent & 1) == 1) {
                res = multiply(res, matrix, mod);
            }
            matrix = square(matrix, mod);
            exponent >>= 1;
        }
        return res;
    }

    public int[][] square(int[][] matrix, int mod) {
        int n = matrix.length;
        int[][] res = new int[n][n];
        for (int row = 0; row < n; row++) {
            for (int col = 0; col < n; col++) {
                for (int i = 0; i < n; i++) {
                    res[row][col] = (int) ((res[row][col] + (long) matrix[row][i] * matrix[i][col]) % mod);
                }
            }
        }
        return res;
    }

    public int[] multiply(int[] vector, int[][] matrix, int mod) {
        int n = vector.length;
        int[] res = new int[n];
        for (int col = 0; col < n; col++) {
            for (int i = 0; i < n; i++) {
                res[col] = (int) ((res[col] + (long) vector[i] * matrix[i][col]) % mod);
            }
        }
        return res;
    }

}

性能

3343.统计平衡排列的数目

目标

给你一个字符串 num 。如果一个数字字符串的奇数位下标的数字之和与偶数位下标的数字之和相等,那么我们称这个数字字符串是 平衡的 。

请你返回 num 不同排列 中,平衡 字符串的数目。

由于答案可能很大,请你将答案对 10^9 + 7 取余 后返回。

一个字符串的 排列 指的是将字符串中的字符打乱顺序后连接得到的字符串。

示例 1:

输入:num = "123"
输出:2
解释:
num 的不同排列包括: "123" ,"132" ,"213" ,"231" ,"312" 和 "321" 。
它们之中,"132" 和 "231" 是平衡的。所以答案为 2 。

示例 2:

输入:num = "112"
输出:1
解释:
num 的不同排列包括:"112" ,"121" 和 "211" 。
只有 "121" 是平衡的。所以答案为 1 。

示例 3:

输入:num = "12345"
输出:0
解释:
num 的所有排列都是不平衡的。所以答案为 0 。

说明:

  • 2 <= num.length <= 80
  • num 中的字符只包含数字 '0' 到 '9' 。

思路

//todo

代码

性能

2071.你可以安排的最多任务数目

目标

给你 n 个任务和 m 个工人。每个任务需要一定的力量值才能完成,需要的力量值保存在下标从 0 开始的整数数组 tasks 中,第 i 个任务需要 tasks[i] 的力量才能完成。每个工人的力量值保存在下标从 0 开始的整数数组 workers 中,第 j 个工人的力量值为 workers[j] 。每个工人只能完成 一个 任务,且力量值需要 大于等于 该任务的力量要求值(即 workers[j] >= tasks[i] )。

除此以外,你还有 pills 个神奇药丸,可以给 一个工人的力量值 增加 strength 。你可以决定给哪些工人使用药丸,但每个工人 最多 只能使用 一片 药丸。

给你下标从 0 开始的整数数组tasks 和 workers 以及两个整数 pills 和 strength ,请你返回 最多 有多少个任务可以被完成。

示例 1:

输入:tasks = [3,2,1], workers = [0,3,3], pills = 1, strength = 1
输出:3
解释:
我们可以按照如下方案安排药丸:
- 给 0 号工人药丸。
- 0 号工人完成任务 2(0 + 1 >= 1)
- 1 号工人完成任务 1(3 >= 2)
- 2 号工人完成任务 0(3 >= 3)

示例 2:

输入:tasks = [5,4], workers = [0,0,0], pills = 1, strength = 5
输出:1
解释:
我们可以按照如下方案安排药丸:
- 给 0 号工人药丸。
- 0 号工人完成任务 0(0 + 5 >= 5)

示例 3:

输入:tasks = [10,15,30], workers = [0,10,10,10,10], pills = 3, strength = 10
输出:2
解释:
我们可以按照如下方案安排药丸:
- 给 0 号和 1 号工人药丸。
- 0 号工人完成任务 0(0 + 10 >= 10)
- 1 号工人完成任务 1(10 + 10 >= 15)

示例 4:

输入:tasks = [5,9,8,5,9], workers = [1,6,4,2,6], pills = 1, strength = 5
输出:3
解释:
我们可以按照如下方案安排药丸:
- 给 2 号工人药丸。
- 1 号工人完成任务 0(6 >= 5)
- 2 号工人完成任务 2(4 + 5 >= 8)
- 4 号工人完成任务 3(6 >= 5)

说明:

  • n == tasks.length
  • m == workers.length
  • 1 <= n, m <= 5 * 10^4
  • 0 <= pills <= m
  • 0 <= tasks[i], workers[j], strength <= 10^9

思路

//todo

代码

性能

2302.统计得分小于K的子数组数目

目标

一个数组的 分数 定义为数组之和 乘以 数组的长度。

  • 比方说,[1, 2, 3, 4, 5] 的分数为 (1 + 2 + 3 + 4 + 5) * 5 = 75 。

给你一个正整数数组 nums 和一个整数 k ,请你返回 nums 中分数 严格小于 k 的 非空整数子数组数目。

子数组 是数组中的一个连续元素序列。

示例 1:

输入:nums = [2,1,4,3,5], k = 10
输出:6
解释:
有 6 个子数组的分数小于 10 :
- [2] 分数为 2 * 1 = 2 。
- [1] 分数为 1 * 1 = 1 。
- [4] 分数为 4 * 1 = 4 。
- [3] 分数为 3 * 1 = 3 。 
- [5] 分数为 5 * 1 = 5 。
- [2,1] 分数为 (2 + 1) * 2 = 6 。
注意,子数组 [1,4] 和 [4,3,5] 不符合要求,因为它们的分数分别为 10 和 36,但我们要求子数组的分数严格小于 10 。

示例 2:

输入:nums = [1,1,1], k = 5
输出:5
解释:
除了 [1,1,1] 以外每个子数组分数都小于 5 。
[1,1,1] 分数为 (1 + 1 + 1) * 3 = 9 ,大于 5 。
所以总共有 5 个子数组得分小于 5 。

说明:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^5
  • 1 <= k <= 10^15

思路

统计 正整数 数组中 子数组元素和 * 子数组长度 < k 的子数组个数。

统计满足条件的子数组个数,首先考虑滑动窗口。枚举右端点 right,只要 [left, right] 的分数小于 k,那么任意以 i ∈ [left, right] 为左端点的子数组的分数都小于 k,共有 right - left + 1 个。如果窗口内的分数大于等于 k,需要移出左端点,直到窗口内的分数小于 k。

代码


/**
 * @date 2025-04-28 8:41
 */
public class CountSubarrays2302 {

    public long countSubarrays(int[] nums, long k) {
        long res = 0L;
        int n = nums.length;
        int left = 0;
        long sum = 0L;
        int len = 0;
        for (int right = 0; right < n; right++) {
            sum += nums[right];
            len++;
            while (left < n && sum * len >= k) {
                sum -= nums[left++];
                len--;
            }
            res += right - left + 1;
        }
        return res;
    }

}

性能

2444.统计定界子数组的数目

目标

给你一个整数数组 nums 和两个整数 minK 以及 maxK 。

nums 的定界子数组是满足下述条件的一个子数组:

  • 子数组中的 最小值 等于 minK 。
  • 子数组中的 最大值 等于 maxK 。

返回定界子数组的数目。

子数组是数组中的一个连续部分。

示例 1:

输入:nums = [1,3,5,2,7,5], minK = 1, maxK = 5
输出:2
解释:定界子数组是 [1,3,5] 和 [1,3,5,2] 。

示例 2:

输入:nums = [1,1,1,1], minK = 1, maxK = 1
输出:10
解释:nums 的每个子数组都是一个定界子数组。共有 10 个子数组。

说明:

  • 2 <= nums.length <= 10^5
  • 1 <= nums[i], minK, maxK <= 10^6

思路

统计满足条件的子数组个数,子数组中必须包含 minKmaxK,并且其它元素值在 [minK, maxK] 内。

明显的滑动窗口问题,求窗口内 minKmaxK 的计数均大于等于 1 且元素值在 [minK, maxK] 内的子数组个数。

如果遇到不在范围内的元素,直接从下一个位置重新开始滑动,关键点是记录滑动的开始位置 start

代码


/**
 * @date 2025-04-26 0:25
 */
public class CountSubarrays2444 {

    public long countSubarrays(int[] nums, int minK, int maxK) {
        int n = nums.length;
        int minCnt = 0, maxCnt = 0;
        int left = 0, start = 0;
        long res = 0L;
        for (int right = 0; right < n; right++) {
            if (nums[right] < minK || nums[right] > maxK) {
                left = right + 1;
                start = left;
                minCnt = 0;
                maxCnt = 0;
                continue;
            }
            if (nums[right] == minK) {
                minCnt++;
            }
            if (nums[right] == maxK) {
                maxCnt++;
            }
            while (minCnt > 0 && maxCnt > 0) {
                if (nums[left] == minK) {
                    minCnt--;
                }
                if (nums[left] == maxK) {
                    maxCnt--;
                }
                left++;
            }
            res += left - start;
        }
        return res;
    }

}

性能