2197.替换数组中的非互质数

目标

给你一个整数数组 nums 。请你对数组执行下述操作:

  1. 从 nums 中找出 任意 两个 相邻 的 非互质 数。
  2. 如果不存在这样的数,终止 这一过程。
  3. 否则,删除这两个数,并 替换 为它们的 最小公倍数(Least Common Multiple,LCM)。
  4. 只要还能找出两个相邻的非互质数就继续 重复 这一过程。

返回修改后得到的 最终 数组。可以证明的是,以 任意 顺序替换相邻的非互质数都可以得到相同的结果。

生成的测试用例可以保证最终数组中的值 小于或者等于 10^8 。

两个数字 x 和 y 满足 非互质数 的条件是:GCD(x, y) > 1 ,其中 GCD(x, y) 是 x 和 y 的 最大公约数 。

示例 1 :

输入:nums = [6,4,3,2,7,6,2]
输出:[12,7,6]
解释:
- (6, 4) 是一组非互质数,且 LCM(6, 4) = 12 。得到 nums = [12,3,2,7,6,2] 。
- (12, 3) 是一组非互质数,且 LCM(12, 3) = 12 。得到 nums = [12,2,7,6,2] 。
- (12, 2) 是一组非互质数,且 LCM(12, 2) = 12 。得到 nums = [12,7,6,2] 。
- (6, 2) 是一组非互质数,且 LCM(6, 2) = 6 。得到 nums = [12,7,6] 。
现在,nums 中不存在相邻的非互质数。
因此,修改后得到的最终数组是 [12,7,6] 。
注意,存在其他方法可以获得相同的最终数组。

示例 2 :

输入:nums = [2,2,1,1,3,3,3]
输出:[2,1,1,3]
解释:
- (3, 3) 是一组非互质数,且 LCM(3, 3) = 3 。得到 nums = [2,2,1,1,3,3] 。
- (3, 3) 是一组非互质数,且 LCM(3, 3) = 3 。得到 nums = [2,2,1,1,3] 。
- (2, 2) 是一组非互质数,且 LCM(2, 2) = 2 。得到 nums = [2,1,1,3] 。
现在,nums 中不存在相邻的非互质数。 
因此,修改后得到的最终数组是 [2,1,1,3] 。 
注意,存在其他方法可以获得相同的最终数组。

说明:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^5
  • 生成的测试用例可以保证最终数组中的值 小于或者等于 10^8 。

思路

将数组 nums 中相邻的非互质的数用它们的最小公倍数替换,一直重复这一过程,返回最终的数组。

遍历数组,针对每一个 num 判断它与其左侧已处理的最后一个值(即 list 的最后一个元素)是否互质,如果不互质,将 num 替换为它们的最小公倍数,同时删除 list 最后一个元素,重复该过程,直到互质为止,最后将 num 加入 list

代码


/**
 * @date 2025-09-16 8:45
 */
public class ReplaceNonCoprimes2197 {

    public List<Integer> replaceNonCoprimes(int[] nums) {
        List<Integer> list = new ArrayList<>();
        for (int a : nums) {
            while (!list.isEmpty()) {
                int b = list.get(list.size() - 1);
                int g = gcd(a, b);
                if (g <= 1) {
                    break;
                }
                a = a / g * b;
                list.remove(list.size() - 1);
            }
            list.add(a);
        }
        return list;
    }

}

性能

3495.使数组元素都变为零的最少操作次数

目标

给你一个二维数组 queries,其中 queries[i] 形式为 [l, r]。每个 queries[i] 表示了一个元素范围从 l 到 r (包括 l 和 r )的整数数组 nums 。

在一次操作中,你可以:

  • 选择一个查询数组中的两个整数 a 和 b。
  • 将它们替换为 floor(a / 4) 和 floor(b / 4)。

你的任务是确定对于每个查询,将数组中的所有元素都变为零的 最少 操作次数。返回所有查询结果的总和。

示例 1:

输入: queries = [[1,2],[2,4]]
输出: 3
解释:
对于 queries[0]:
初始数组为 nums = [1, 2]。
在第一次操作中,选择 nums[0] 和 nums[1]。数组变为 [0, 0]。
所需的最小操作次数为 1。
对于 queries[1]:
初始数组为 nums = [2, 3, 4]。
在第一次操作中,选择 nums[0] 和 nums[2]。数组变为 [0, 3, 1]。
在第二次操作中,选择 nums[1] 和 nums[2]。数组变为 [0, 0, 0]。
所需的最小操作次数为 2。
输出为 1 + 2 = 3。

示例 2:

输入: queries = [[2,6]]
输出: 4
解释:
对于 queries[0]:
初始数组为 nums = [2, 3, 4, 5, 6]。
在第一次操作中,选择 nums[0] 和 nums[3]。数组变为 [0, 3, 4, 1, 6]。
在第二次操作中,选择 nums[2] 和 nums[4]。数组变为 [0, 3, 1, 1, 1]。
在第三次操作中,选择 nums[1] 和 nums[2]。数组变为 [0, 0, 0, 1, 1]。
在第四次操作中,选择 nums[3] 和 nums[4]。数组变为 [0, 0, 0, 0, 0]。
所需的最小操作次数为 4。
输出为 4。

说明:

  • 1 <= queries.length <= 10^5
  • queries[i].length == 2
  • queries[i] == [l, r]
  • 1 <= l < r <= 10^9

思路

代码

性能

3027.人员站位的方案数II

目标

给你一个 n x 2 的二维数组 points ,它表示二维平面上的一些点坐标,其中 points[i] = [xi, yi] 。

我们定义 x 轴的正方向为 右 (x 轴递增的方向),x 轴的负方向为 左 (x 轴递减的方向)。类似的,我们定义 y 轴的正方向为 上 (y 轴递增的方向),y 轴的负方向为 下 (y 轴递减的方向)。

你需要安排这 n 个人的站位,这 n 个人中包括 Alice 和 Bob 。你需要确保每个点处 恰好 有 一个 人。同时,Alice 想跟 Bob 单独玩耍,所以 Alice 会以 Alice 的坐标为 左上角 ,Bob 的坐标为 右下角 建立一个矩形的围栏(注意,围栏可能 不 包含任何区域,也就是说围栏可能是一条线段)。如果围栏的 内部 或者 边缘 上有任何其他人,Alice 都会难过。

请你在确保 Alice 不会 难过的前提下,返回 Alice 和 Bob 可以选择的 点对 数目。

注意,Alice 建立的围栏必须确保 Alice 的位置是矩形的左上角,Bob 的位置是矩形的右下角。比方说,以 (1, 1) ,(1, 3) ,(3, 1) 和 (3, 3) 为矩形的四个角,给定下图的两个输入,Alice 都不能建立围栏,原因如下:

图一中,Alice 在 (3, 3) 且 Bob 在 (1, 1) ,Alice 的位置不是左上角且 Bob 的位置不是右下角。
图二中,Alice 在 (1, 3) 且 Bob 在 (1, 1) ,Bob 的位置不是在围栏的右下角。

示例 1:

输入:points = [[1,1],[2,2],[3,3]]
输出:0
解释:没有办法可以让 Alice 的围栏以 Alice 的位置为左上角且 Bob 的位置为右下角。所以我们返回 0 。

示例 2:

输入:points = [[6,2],[4,4],[2,6]]
输出:2
解释:总共有 2 种方案安排 Alice 和 Bob 的位置,使得 Alice 不会难过:
- Alice 站在 (4, 4) ,Bob 站在 (6, 2) 。
- Alice 站在 (2, 6) ,Bob 站在 (4, 4) 。
不能安排 Alice 站在 (2, 6) 且 Bob 站在 (6, 2) ,因为站在 (4, 4) 的人处于围栏内。

示例 3:

输入:points = [[3,1],[1,3],[1,1]]
输出:2
解释:总共有 2 种方案安排 Alice 和 Bob 的位置,使得 Alice 不会难过:
- Alice 站在 (1, 1) ,Bob 站在 (3, 1) 。
- Alice 站在 (1, 3) ,Bob 站在 (1, 1) 。
不能安排 Alice 站在 (1, 3) 且 Bob 站在 (3, 1) ,因为站在 (1, 1) 的人处于围栏内。
注意围栏是可以不包含任何面积的,上图中第一和第二个围栏都是合法的。

说明:

  • 2 <= n <= 1000
  • points[i].length == 2
  • -10^9 <= points[i][0], points[i][1] <= 10^9
  • points[i] 点对两两不同。

思路

代码

性能

37.解数独

目标

编写一个程序,通过填充空格来解决数独问题。

数独的解法需 遵循如下规则:

  1. 数字 1-9 在每一行只能出现一次。
  2. 数字 1-9 在每一列只能出现一次。
  3. 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)

数独部分空格内已填入了数字,空白格用 '.' 表示。

示例 1:

输入:
board = [
    ["5","3",".",".","7",".",".",".","."],
    ["6",".",".","1","9","5",".",".","."],
    [".","9","8",".",".",".",".","6","."],
    ["8",".",".",".","6",".",".",".","3"],
    ["4",".",".","8",".","3",".",".","1"],
    ["7",".",".",".","2",".",".",".","6"],
    [".","6",".",".",".",".","2","8","."],
    [".",".",".","4","1","9",".",".","5"],
    [".",".",".",".","8",".",".","7","9"]
    ]
输出:
[
    ["5","3","4","6","7","8","9","1","2"],
    ["6","7","2","1","9","5","3","4","8"],
    ["1","9","8","3","4","2","5","6","7"],
    ["8","5","9","7","6","1","4","2","3"],
    ["4","2","6","8","5","3","7","9","1"],
    ["7","1","3","9","2","4","8","5","6"],
    ["9","6","1","5","3","7","2","8","4"],
    ["2","8","7","4","1","9","6","3","5"],
    ["3","4","5","2","8","6","1","7","9"]
]
解释:输入的数独如上图所示,唯一有效的解决方案如下所示:

说明:

  • board.length == 9
  • board[i].length == 9
  • board[i][j] 是一位数字或者 '.'
  • 题目数据 保证 输入数独仅有一个解

思路

代码

性能

3459.最长V形对角线段的长度

目标

给你一个大小为 n x m 的二维整数矩阵 grid,其中每个元素的值为 0、1 或 2。

V 形对角线段 定义如下:

  • 线段从 1 开始。
  • 后续元素按照以下无限序列的模式排列:2, 0, 2, 0, ...。
  • 该线段:
    • 起始于某个对角方向(左上到右下、右下到左上、右上到左下或左下到右上)。
    • 沿着相同的对角方向继续,保持 序列模式 。
    • 在保持 序列模式 的前提下,最多允许 一次顺时针 90 度转向 另一个对角方向。

返回最长的 V 形对角线段 的 长度 。如果不存在有效的线段,则返回 0。

示例 1:

输入: grid = [[2,2,1,2,2],[2,0,2,2,0],[2,0,1,1,0],[1,0,2,2,2],[2,0,0,2,2]]
输出: 5
解释:
最长的 V 形对角线段长度为 5,路径如下:(0,2) → (1,3) → (2,4),在 (2,4) 处进行 顺时针 90 度转向 ,继续路径为 (3,3) → (4,2)。

示例 2:

输入: grid = [[2,2,2,2,2],[2,0,2,2,0],[2,0,1,1,0],[1,0,2,2,2],[2,0,0,2,2]]
输出: 4
解释:
最长的 V 形对角线段长度为 4,路径如下:(2,3) → (3,2),在 (3,2) 处进行 顺时针 90 度转向 ,继续路径为 (2,1) → (1,0)。

示例 3:

输入: grid = [[1,2,2,2,2],[2,2,2,2,0],[2,0,0,0,0],[0,0,2,2,2],[2,0,0,2,0]]
输出: 5
解释:
最长的 V 形对角线段长度为 5,路径如下:(0,0) → (1,1) → (2,2) → (3,3) → (4,4)。

示例 4:

输入: grid = [[1]]
输出: 1
解释:
最长的 V 形对角线段长度为 1,路径如下:(0,0)。

说明:

  • n == grid.length
  • m == grid[i].length
  • 1 <= n, m <= 500
  • grid[i][j] 的值为 0、1 或 2。

思路

代码

性能

3197.包含所有1的最小矩形面积II

目标

给你一个二维 二进制 数组 grid。你需要找到 3 个 不重叠、面积 非零 、边在水平方向和竖直方向上的矩形,并且满足 grid 中所有的 1 都在这些矩形的内部。

返回这些矩形面积之和的 最小 可能值。

注意,这些矩形可以相接。

示例 1:

输入: grid = [[1,0,1],[1,1,1]]
输出: 5
解释:
位于 (0, 0) 和 (1, 0) 的 1 被一个面积为 2 的矩形覆盖。
位于 (0, 2) 和 (1, 2) 的 1 被一个面积为 2 的矩形覆盖。
位于 (1, 1) 的 1 被一个面积为 1 的矩形覆盖。

示例 2:

输入: grid = [[1,0,1,0],[0,1,0,1]]
输出: 5
解释:
位于 (0, 0) 和 (0, 2) 的 1 被一个面积为 3 的矩形覆盖。
位于 (1, 1) 的 1 被一个面积为 1 的矩形覆盖。
位于 (1, 3) 的 1 被一个面积为 1 的矩形覆盖。

说明:

  • 1 <= grid.length, grid[i].length <= 30
  • grid[i][j] 是 0 或 1。
  • 输入保证 grid 中至少有三个 1 。

思路

代码

性能

679.24点游戏

目标

给定一个长度为 4 的整数数组 cards 。你有 4 张卡片,每张卡片上都包含一个范围在 [1,9] 的数字。您应该使用运算符 ['+', '-', '*', '/'] 和括号 '(' 和 ')' 将这些卡片上的数字排列成数学表达式,以获得值 24。

你须遵守以下规则:

  • 除法运算符 '/' 表示实数除法,而不是整数除法。
    • 例如, 4 /(1 - 2 / 3)= 4 /(1 / 3)= 12 。
  • 每个运算都在两个数字之间。特别是,不能使用 “-” 作为一元运算符。
    • 例如,如果 cards =[1,1,1,1] ,则表达式 “-1 -1 -1 -1” 是 不允许 的。
  • 你不能把数字串在一起
    • 例如,如果 cards =[1,2,1,2] ,则表达式 “12 + 12” 无效。

如果可以得到这样的表达式,其计算结果为 24 ,则返回 true ,否则返回 false 。

示例 1:

输入: cards = [4, 1, 8, 7]
输出: true
解释: (8-4) * (7-1) = 24

示例 2:

输入: cards = [1, 2, 1, 2]
输出: false

提示:

  • cards.length == 4
  • 1 <= cards[i] <= 9

思路

代码

性能

3363.最多可收集的水果数目

目标

有一个游戏,游戏由 n x n 个房间网格状排布组成。

给你一个大小为 n x n 的二维整数数组 fruits ,其中 fruits[i][j] 表示房间 (i, j) 中的水果数目。有三个小朋友 一开始 分别从角落房间 (0, 0) ,(0, n - 1) 和 (n - 1, 0) 出发。

每一位小朋友都会 恰好 移动 n - 1 次,并到达房间 (n - 1, n - 1) :

  • 从 (0, 0) 出发的小朋友每次移动从房间 (i, j) 出发,可以到达 (i + 1, j + 1) ,(i + 1, j) 和 (i, j + 1) 房间之一(如果存在)。
  • 从 (0, n - 1) 出发的小朋友每次移动从房间 (i, j) 出发,可以到达房间 (i + 1, j - 1) ,(i + 1, j) 和 (i + 1, j + 1) 房间之一(如果存在)。
  • 从 (n - 1, 0) 出发的小朋友每次移动从房间 (i, j) 出发,可以到达房间 (i - 1, j + 1) ,(i, j + 1) 和 (i + 1, j + 1) 房间之一(如果存在)。

当一个小朋友到达一个房间时,会把这个房间里所有的水果都收集起来。如果有两个或者更多小朋友进入同一个房间,只有一个小朋友能收集这个房间的水果。当小朋友离开一个房间时,这个房间里不会再有水果。

请你返回三个小朋友总共 最多 可以收集多少个水果。

示例 1:

输入:fruits = [[1,2,3,4],[5,6,8,7],[9,10,11,12],[13,14,15,16]]
输出:100
解释:
这个例子中:
第 1 个小朋友(绿色)的移动路径为 (0,0) -> (1,1) -> (2,2) -> (3, 3) 。
第 2 个小朋友(红色)的移动路径为 (0,3) -> (1,2) -> (2,3) -> (3, 3) 。
第 3 个小朋友(蓝色)的移动路径为 (3,0) -> (3,1) -> (3,2) -> (3, 3) 。
他们总共能收集 1 + 6 + 11 + 1 + 4 + 8 + 12 + 13 + 14 + 15 = 100 个水果。

示例 2:

输入:fruits = [[1,1],[1,1]]
输出:4
解释:
这个例子中:
第 1 个小朋友移动路径为 (0,0) -> (1,1) 。
第 2 个小朋友移动路径为 (0,1) -> (1,1) 。
第 3 个小朋友移动路径为 (1,0) -> (1,1) 。
他们总共能收集 1 + 1 + 1 + 1 = 4 个水果。

说明:

  • 2 <= n == fruits.length == fruits[i].length <= 1000
  • 0 <= fruits[i][j] <= 1000

思路

有一个 n x n 排列的房间,房间中放有水果,fruits[i][j] 表示坐标为 (i, j) 的房间中的水果数量,有三个小朋友 A B C 同时从 (0, 0) (0, n - 1) (n - 1, 0) 出发,A 可以向 走,B 可以向 走,C 可以向 走,每一个小朋友到达一个房间会带走所有水果,求三个小朋友从起点出发,恰好走 n - 1 步 到达 (n - 1, n - 1) 总共可以收集的水果数量。

// todo

代码

性能

2106.摘水果

目标

在一个无限的 x 坐标轴上,有许多水果分布在其中某些位置。给你一个二维整数数组 fruits ,其中 fruits[i] = [positioni, amounti] 表示共有 amounti 个水果放置在 positioni 上。fruits 已经按 positioni 升序排列 ,每个 positioni 互不相同 。

另给你两个整数 startPos 和 k 。最初,你位于 startPos 。从任何位置,你可以选择 向左或者向右 走。在 x 轴上每移动 一个单位 ,就记作 一步 。你总共可以走 最多 k 步。你每达到一个位置,都会摘掉全部的水果,水果也将从该位置消失(不会再生)。

返回你可以摘到水果的 最大总数 。

示例 1:

输入:fruits = [[2,8],[6,3],[8,6]], startPos = 5, k = 4
输出:9
解释:
最佳路线为:
- 向右移动到位置 6 ,摘到 3 个水果
- 向右移动到位置 8 ,摘到 6 个水果
移动 3 步,共摘到 3 + 6 = 9 个水果

示例 2:

输入:fruits = [[0,9],[4,1],[5,7],[6,2],[7,4],[10,9]], startPos = 5, k = 4
输出:14
解释:
可以移动最多 k = 4 步,所以无法到达位置 0 和位置 10 。
最佳路线为:
- 在初始位置 5 ,摘到 7 个水果
- 向左移动到位置 4 ,摘到 1 个水果
- 向右移动到位置 6 ,摘到 2 个水果
- 向右移动到位置 7 ,摘到 4 个水果
移动 1 + 3 = 4 步,共摘到 7 + 1 + 2 + 4 = 14 个水果

示例 3:

输入:fruits = [[0,3],[6,4],[8,5]], startPos = 3, k = 2
输出:0
解释:
最多可以移动 k = 2 步,无法到达任一有水果的地方

说明:

  • 1 <= fruits.length <= 10^5
  • fruits[i].length == 2
  • 0 <= startPos, positioni <= 2 * 10^5
  • 对于任意 i > 0 ,positioni-1 < positioni 均成立(下标从 0 开始计数)
  • 1 <= amounti <= 10^4
  • 0 <= k <= 2 * 10^5

思路

代码

性能

2561.重排水果

目标

你有两个果篮,每个果篮中有 n 个水果。给你两个下标从 0 开始的整数数组 basket1 和 basket2 ,用以表示两个果篮中每个水果的交换成本。你想要让两个果篮相等。为此,可以根据需要多次执行下述操作:

  • 选中两个下标 i 和 j ,并交换 basket1 中的第 i 个水果和 basket2 中的第 j 个水果。
  • 交换的成本是 min(basket1i,basket2j) 。

根据果篮中水果的成本进行排序,如果排序后结果完全相同,则认为两个果篮相等。

返回使两个果篮相等的最小交换成本,如果无法使两个果篮相等,则返回 -1 。

示例 1:

输入:basket1 = [4,2,2,2], basket2 = [1,4,1,2]
输出:1
解释:交换 basket1 中下标为 1 的水果和 basket2 中下标为 0 的水果,交换的成本为 1 。此时,basket1 = [4,1,2,2] 且 basket2 = [2,4,1,2] 。重排两个数组,发现二者相等。

示例 2:

输入:basket1 = [2,3,4,1], basket2 = [3,2,5,1]
输出:-1
解释:可以证明无法使两个果篮相等。

说明:

  • basket1.length == bakste2.length
  • 1 <= basket1.length <= 10^5
  • 1 <= basket1i,basket2i <= 10^9

思路

代码

性能