1984.学生分数的最小差值

目标

给你一个 下标从 0 开始 的整数数组 nums ,其中 nums[i] 表示第 i 名学生的分数。另给你一个整数 k 。

从数组中选出任意 k 名学生的分数,使这 k 个分数间 最高分 和 最低分 的 差值 达到 最小化 。

返回可能的 最小差值 。

示例 1:

输入:nums = [90], k = 1
输出:0
解释:选出 1 名学生的分数,仅有 1 种方法:
- [90] 最高分和最低分之间的差值是 90 - 90 = 0
可能的最小差值是 0

示例 2:

输入:nums = [9,4,1,7], k = 2
输出:2
解释:选出 2 名学生的分数,有 6 种方法:
- [9,4,1,7] 最高分和最低分之间的差值是 9 - 4 = 5
- [9,4,1,7] 最高分和最低分之间的差值是 9 - 1 = 8
- [9,4,1,7] 最高分和最低分之间的差值是 9 - 7 = 2
- [9,4,1,7] 最高分和最低分之间的差值是 4 - 1 = 3
- [9,4,1,7] 最高分和最低分之间的差值是 7 - 4 = 3
- [9,4,1,7] 最高分和最低分之间的差值是 7 - 1 = 6
可能的最小差值是 2

说明:

  • 1 <= k <= nums.length <= 1000
  • 0 <= nums[i] <= 10^5

思路

nums 中选择 k 个元素,求这 k 个元素中最大值与最小值的差的最小值。

要使差值最小,应该尽量缩小所选元素之间的距离。排序,使用定长滑动窗口,窗口内最大值与最小值的差即为 nums[r] - nums[l]

代码


/**
 * @date 2026-01-26 9:59
 */
public class MinimumDifference1984 {

    public int minimumDifference(int[] nums, int k) {
        int res = Integer.MAX_VALUE;
        Arrays.sort(nums);
        int l = 0;
        int n = nums.length;
        for (int r = k - 1; r < n; r++) {
            res = Math.min(res, nums[r] - nums[l++]);
        }
        return res;
    }
}

性能

1877.数组中最大数对和的最小值

目标

一个数对 (a,b) 的 数对和 等于 a + b 。最大数对和 是一个数对数组中最大的 数对和 。

  • 比方说,如果我们有数对 (1,5) ,(2,3) 和 (4,4),最大数对和 为 max(1+5, 2+3, 4+4) = max(6, 5, 8) = 8 。

给你一个长度为 偶数 n 的数组 nums ,请你将 nums 中的元素分成 n / 2 个数对,使得:

  • nums 中每个元素 恰好 在 一个 数对中,且
  • 最大数对和 的值 最小 。

请你在最优数对划分的方案下,返回最小的 最大数对和 。

示例 1:

输入:nums = [3,5,2,3]
输出:7
解释:数组中的元素可以分为数对 (3,3) 和 (5,2) 。
最大数对和为 max(3+3, 5+2) = max(6, 7) = 7 。

示例 2:

输入:nums = [3,5,4,2,4,6]
输出:8
解释:数组中的元素可以分为数对 (3,5),(4,4) 和 (6,2) 。
最大数对和为 max(3+5, 4+4, 6+2) = max(8, 8, 8) = 8 。

说明:

  • n == nums.length
  • 2 <= n <= 10^5
  • n 是 偶数 。
  • 1 <= nums[i] <= 10^5

思路

将长度为偶数的数组 nums 划分成若干数对,求这些数对和的最大值的最小值。

每种划分方案可以得到数对的最大值,取不同方案中最大值的最小值。

容易猜到划分方案应该是最小值与最大值组成数对,次小值与次大值组成数对,以此类推。

可以使用交换论证法来证明,如果存在一个更优的方案,那么可以通过 局部交换 操作,将其逐步调整为贪心方案,且每一步都不增加代价(或保持最优)。

代码


/**
 * @date 2026-01-26 11:32
 */
public class MinPairSum1877 {

    public int minPairSum(int[] nums) {
        Arrays.sort(nums);
        int n = nums.length;
        int res = 0;
        for (int i = 0; i < n / 2; i++) {
            res = Math.max(res, nums[i] + nums[n - 1 - i]);
        }
        return res;
    }

}

性能

2943.最大化网格图中正方形空洞的面积

目标

给你一个网格图,由 n + 2 条 横线段 和 m + 2 条 竖线段 组成,一开始所有区域均为 1 x 1 的单元格。

所有线段的编号从 1 开始。

给你两个整数 n 和 m 。

同时给你两个整数数组 hBars 和 vBars 。

  • hBars 包含区间 [2, n + 1] 内 互不相同 的横线段编号。
  • vBars 包含 [2, m + 1] 内 互不相同的 竖线段编号。

如果满足以下条件之一,你可以 移除 两个数组中的部分线段:

  • 如果移除的是横线段,它必须是 hBars 中的值。
  • 如果移除的是竖线段,它必须是 vBars 中的值。

请你返回移除一些线段后(可能不移除任何线段),剩余网格图中 最大正方形 空洞的面积,正方形空洞的意思是正方形 内部 不含有任何线段。

示例 1:

输入:n = 2, m = 1, hBars = [2,3], vBars = [2]
输出:4
解释:左边的图是一开始的网格图。
横线编号的范围是区间 [1,4] ,竖线编号的范围是区间 [1,3] 。
可以移除的横线段为 [2,3] ,竖线段为 [2] 。
一种得到最大正方形面积的方法是移除横线段 2 和竖线段 2 。
操作后得到的网格图如右图所示。
正方形空洞面积为 4。
无法得到面积大于 4 的正方形空洞。
所以答案为 4 。

示例 2:

输入:n = 1, m = 1, hBars = [2], vBars = [2]
输出:4
解释:左边的图是一开始的网格图。
横线编号的范围是区间 [1,3] ,竖线编号的范围是区间 [1,3] 。
可以移除的横线段为 [2] ,竖线段为 [2] 。
一种得到最大正方形面积的方法是移除横线段 2 和竖线段 2 。
操作后得到的网格图如右图所示。
正方形空洞面积为 4。
无法得到面积大于 4 的正方形空洞。
所以答案为 4 。

示例 3:

输入:n = 2, m = 3, hBars = [2,3], vBars = [2,3,4]
输出:9
解释:左边的图是一开始的网格图。
横线编号的范围是区间 [1,4] ,竖线编号的范围是区间 [1,5] 。
可以移除的横线段为 [2,3] ,竖线段为 [2,3,4] 。
一种得到最大正方形面积的方法是移除横线段 2、3 和竖线段 3、4 。
操作后得到的网格图如右图所示。
正方形空洞面积为 9。
无法得到面积大于 9 的正方形空洞。
所以答案为 9 。

说明:

  • 1 <= n <= 10^9
  • 1 <= m <= 10^9
  • 1 <= hBars.length <= 100
  • 2 <= hBars[i] <= n + 1
  • 1 <= vBars.length <= 100
  • 2 <= vBars[i] <= m + 1
  • hBars 中的值互不相同。
  • vBars 中的值互不相同。

思路

有一个网格图由 n + 2 条横线段编号为 1 ~ n + 2m + 2 条竖线段编号为 1 ~ m + 2 组成,单元格为 1 x 1,即横线间隔为 1,竖线间隔为 1。有两个数组 hBarsvBars,给出了横线段的编号 2 ~ n + 1 与竖线段编号 2 ~ m + 1 内的线段。删除其中的一些线段,使得空洞的正方形面积最大,返回面积的最大值。

要使空洞最大,能删尽删,找出两个数组线段编号连续的长度最大值,取二者的最小值(正方形),加一(删掉 k 条线段,空洞的边长为 k + 1)后平方即可。

代码


/**
 * @date 2026-01-15 9:08
 */
public class MaximizeSquareHoleArea2943 {

    public int maximizeSquareHoleArea(int n, int m, int[] hBars, int[] vBars) {
        Arrays.sort(hBars);
        Arrays.sort(vBars);
        int hmax = getMaxInterval(hBars);
        int vmax = getMaxInterval(vBars);
        int min = Math.min(hmax, vmax) + 1;
        return min * min;
    }

    private int getMaxInterval_v1(int[] bars) {
        int l = bars.length;
        int max = 1;
        int i = 0;
        while (i < l - 1) {
            int start = i;
            do {
                i++;
            } while (i < l && bars[i - 1] + 1 == bars[i]);
            max = Math.max(max, i - start);
        }
        return max;
    }

}

性能

1975.最大方阵和

目标

给你一个 n x n 的整数方阵 matrix 。你可以执行以下操作 任意次 :

  • 选择 matrix 中 相邻 两个元素,并将它们都 乘以 -1 。

如果两个元素有 公共边 ,那么它们就是 相邻 的。

你的目的是 最大化 方阵元素的和。请你在执行以上操作之后,返回方阵的 最大 和。

示例 1:

输入:matrix = [[1,-1],[-1,1]]
输出:4
解释:我们可以执行以下操作使和等于 4 :
- 将第一行的 2 个元素乘以 -1 。
- 将第一列的 2 个元素乘以 -1 。

示例 2:

输入:matrix = [[1,2,3],[-1,-2,-3],[1,2,3]]
输出:16
解释:我们可以执行以下操作使和等于 16 :
- 将第二行的最后 2 个元素乘以 -1 。

说明:

  • n == matrix.length == matrix[i].length
  • 2 <= n <= 250
  • -10^5 <= matrix[i][j] <= 10^5

思路

有一个 n x n 矩阵,每次操作可以将相邻的元素乘以 -1,执行操作任意次,求能够得到的最大方阵和。

经过观察发现,可以将任意两个元素乘以 -1,只需对路径上的每个元素执行操作,改变 (cur, next) 的符号,中间每个元素的符号都被改变了两次,即首尾元素改变了符号。

只需判断矩阵中负数的个数,如果是偶数,可以将负数全部变为相反数;如果是奇数,则需要找到最小的非负数,将其变为负数,其余元素全部变为非负数。

代码


/**
 * @date 2026-01-05 9:07
 */
public class MaxMatrixSum1975 {

    public long maxMatrixSum(int[][] matrix) {
        long res = 0L;
        int negativeCnt = 0;
        int min = Integer.MAX_VALUE;
        for (int[] row : matrix) {
            for (int col : row) {
                res += Math.abs(col);
                min = Math.min(min, Math.abs(col));
                if (col < 0) {
                    negativeCnt++;
                }
            }
        }
        if (negativeCnt % 2 == 1) {
            res -= 2 * min;
        }
        return res;
    }

}

性能

3075.幸福值最大化的选择方案

目标

给你一个长度为 n 的数组 happiness ,以及一个 正整数 k 。

n 个孩子站成一队,其中第 i 个孩子的 幸福值 是 happiness[i] 。你计划组织 k 轮筛选从这 n 个孩子中选出 k 个孩子。

在每一轮选择一个孩子时,所有 尚未 被选中的孩子的 幸福值 将减少 1 。注意,幸福值 不能 变成负数,且只有在它是正数的情况下才会减少。

选择 k 个孩子,并使你选中的孩子幸福值之和最大,返回你能够得到的 最大值 。

示例 1:

输入:happiness = [1,2,3], k = 2
输出:4
解释:按以下方式选择 2 个孩子:
- 选择幸福值为 3 的孩子。剩余孩子的幸福值变为 [0,1] 。
- 选择幸福值为 1 的孩子。剩余孩子的幸福值变为 [0] 。注意幸福值不能小于 0 。
所选孩子的幸福值之和为 3 + 1 = 4 。

示例 2:

输入:happiness = [1,1,1,1], k = 2
输出:1
解释:按以下方式选择 2 个孩子:
- 选择幸福值为 1 的任意一个孩子。剩余孩子的幸福值变为 [0,0,0] 。
- 选择幸福值为 0 的孩子。剩余孩子的幸福值变为 [0,0] 。
所选孩子的幸福值之和为 1 + 0 = 1 。

示例 3:

输入:happiness = [2,3,4,5], k = 1
输出:5
解释:按以下方式选择 1 个孩子:
- 选择幸福值为 5 的孩子。剩余孩子的幸福值变为 [1,2,3] 。
所选孩子的幸福值之和为 5 。

说明:

  • 1 <= n == happiness.length <= 2 * 10^5
  • 1 <= happiness[i] <= 10^8
  • 1 <= k <= n

思路

n 个孩子站成一排,happiness[i] 表示第 i 个孩子的幸福值,从中选 k 个孩子,每选择一个孩子,剩余孩子的幸福值会减少 1(但不会是负值),求所选孩子幸福值之和的最大值。

贪心策略,优先选幸福值最大的,因为下限为 0,如果放后面选减的更多。

代码


/**
 * @date 2025-12-25 8:51
 */
public class MaximumHappinessSum3075 {

    public long maximumHappinessSum(int[] happiness, int k) {
        long res = 0;
        int sub = 0;
        Arrays.sort(happiness);
        int n = happiness.length;
        for (int i = n - 1; sub < k; i--) {
            res += Math.max(0, happiness[i] - sub++);
        }
        return res;
    }
}

性能

3074.重新分装苹果

目标

给你一个长度为 n 的数组 apple 和另一个长度为 m 的数组 capacity 。

一共有 n 个包裹,其中第 i 个包裹中装着 apple[i] 个苹果。同时,还有 m 个箱子,第 i 个箱子的容量为 capacity[i] 个苹果。

请你选择一些箱子来将这 n 个包裹中的苹果重新分装到箱子中,返回你需要选择的箱子的 最小 数量。

注意,同一个包裹中的苹果可以分装到不同的箱子中。

示例 1:

输入:apple = [1,3,2], capacity = [4,3,1,5,2]
输出:2
解释:使用容量为 4 和 5 的箱子。
总容量大于或等于苹果的总数,所以可以完成重新分装。

示例 2:

输入:apple = [5,5,5], capacity = [2,4,2,7]
输出:4
解释:需要使用所有箱子。

说明:

  • 1 <= n == apple.length <= 50
  • 1 <= m == capacity.length <= 50
  • 1 <= apple[i], capacity[i] <= 50
  • 输入数据保证可以将包裹中的苹果重新分装到箱子中。

思路

apple[i] 表示第 i 个包裹中苹果的数量,capacity[i] 表示第 i 个箱子的容量,现在需要将包裹中的苹果分装到箱子中,求所需箱子的最小数量。

累加所有苹果的数量,优先选择容量大的箱子装箱,记录箱子个数。

代码


/**
 * @date 2025-12-24 8:44
 */
public class MinimumBoxes3074 {

    public int minimumBoxes(int[] apple, int[] capacity) {
        int sum = 0;
        for (int num : apple) {
            sum += num;
        }
        Arrays.sort(capacity);
        int res = 0;
        for (int i = capacity.length - 1; i >= 0; i--) {
            if (sum <= 0) {
                break;
            }
            sum -= capacity[i];
            res++;
        }
        return res;
    }
}

性能

955.删列造序II

目标

给定由 n 个字符串组成的数组 strs,其中每个字符串长度相等。

选取一个删除索引序列,对于 strs 中的每个字符串,删除对应每个索引处的字符。

比如,有 strs = ["abcdef", "uvwxyz"],删除索引序列 {0, 2, 3},删除后 strs 为["bef", "vyz"]。

假设,我们选择了一组删除索引 answer,那么在执行删除操作之后,最终得到的数组的元素是按 字典序(strs[0] <= strs[1] <= strs[2] ... <= strs[n - 1])排列的,然后请你返回 answer.length 的最小可能值。

示例 1:

输入:strs = ["ca","bb","ac"]
输出:1
解释: 
删除第一列后,strs = ["a", "b", "c"]。
现在 strs 中元素是按字典排列的 (即,strs[0] <= strs[1] <= strs[2])。
我们至少需要进行 1 次删除,因为最初 strs 不是按字典序排列的,所以答案是 1。

示例 2:

输入:strs = ["xc","yb","za"]
输出:0
解释:
strs 的列已经是按字典序排列了,所以我们不需要删除任何东西。
注意 strs 的行不需要按字典序排列。
也就是说,strs[0][0] <= strs[0][1] <= ... 不一定成立。

示例 3:

输入:strs = ["zyx","wvu","tsr"]
输出:3
解释:
我们必须删掉每一列。

说明:

  • n == strs.length
  • 1 <= n <= 100
  • 1 <= strs[i].length <= 100
  • strs[i] 由小写英文字母组成

思路

有一个元素长度相同的字符串数组 strs,通过删除列使得字符串元素按字典序非严格递增,返回删除的最少列数。

首先如果按列不是非严格递增的,那么一定要删除该列。然后,如果是非严格递增的,需要继续考查相同行后续列的字典序。

维护同一列中相同字母的行标列表 sameList,初始时包括所有行,如果需要删除就直接进入下一列循环,否则遍历 sameList 判断是否是升序(相同的字母组内比较),同时记录当前列相同的行标,如果 sameList 列表为空则退出。

代码


/**
 * @date 2025-12-21 19:24
 */
public class MinDeletionSize955 {

    public int minDeletionSize(String[] strs) {
        int n = strs.length;
        int m = strs[0].length();
        List<Integer> indexList = new ArrayList<>(n);
        for (int i = 0; i < n - 1; i++) {
            indexList.add(i);
        }
        int res = 0;
        here:
        for (int i = 0; i < m; i++) {
            if (indexList.size() == 0) {
                break;
            }
            List<Integer> tmp = new ArrayList<>();
            for (Integer k : indexList) {
                char cur = strs[k].charAt(i);
                char next = strs[k + 1].charAt(i);
                if (cur > next) {
                    res++;
                    continue here;
                } else if (cur == next) {
                    tmp.add(k);
                }
            }
            indexList = tmp;
        }
        return res;
    }

}

性能

2141.同时运行N台电脑的最长时间

目标

你有 n 台电脑。给你整数 n 和一个下标从 0 开始的整数数组 batteries ,其中第 i 个电池可以让一台电脑 运行 batteries[i] 分钟。你想使用这些电池让 全部 n 台电脑 同时 运行。

一开始,你可以给每台电脑连接 至多一个电池 。然后在任意整数时刻,你都可以将一台电脑与它的电池断开连接,并连接另一个电池,你可以进行这个操作 任意次 。新连接的电池可以是一个全新的电池,也可以是别的电脑用过的电池。断开连接和连接新的电池不会花费任何时间。

注意,你不能给电池充电。

请你返回你可以让 n 台电脑同时运行的 最长 分钟数。

示例 1:

输入:n = 2, batteries = [3,3,3]
输出:4
解释:
一开始,将第一台电脑与电池 0 连接,第二台电脑与电池 1 连接。
2 分钟后,将第二台电脑与电池 1 断开连接,并连接电池 2 。注意,电池 0 还可以供电 1 分钟。
在第 3 分钟结尾,你需要将第一台电脑与电池 0 断开连接,然后连接电池 1 。
在第 4 分钟结尾,电池 1 也被耗尽,第一台电脑无法继续运行。
我们最多能同时让两台电脑同时运行 4 分钟,所以我们返回 4 。

示例 2:

输入:n = 2, batteries = [1,1,1,1]
输出:2
解释:
一开始,将第一台电脑与电池 0 连接,第二台电脑与电池 2 连接。
一分钟后,电池 0 和电池 2 同时耗尽,所以你需要将它们断开连接,并将电池 1 和第一台电脑连接,电池 3 和第二台电脑连接。
1 分钟后,电池 1 和电池 3 也耗尽了,所以两台电脑都无法继续运行。
我们最多能让两台电脑同时运行 2 分钟,所以我们返回 2 。

说明:

  • 1 <= n <= batteries.length <= 10^5
  • 1 <= batteries[i] <= 10^9

思路

有 m 个电池,batteries[i] 表示第 i 个电池的电量,将电池分成 n 组,要求每组电池电量和的最小值最大。

贪心的做法是找到上界 x = sum / n,从大到小遍历电池容量:

  • 如果大于 x,超过的部分也不能再使用了,因为一个电池在同一时间只能为一台电池供电,问题规模缩小,sum -= batteries[i]n--
  • 如果小于等于 x,可以用完了再接上下一个电池,不会出现一个电池供两台电脑的情况,因为如果出现这种情况,总是可以将其放到一台的末尾与一台的开头将它们错开。

代码


/**
 * @date 2025-12-01 8:57
 */
public class MaxRunTime2141 {

    public long maxRunTime(int n, int[] batteries) {
        long sum = 0L;
        for (int battery : batteries) {
            sum += battery;
        }
        Arrays.sort(batteries);
        int m = batteries.length;
        for (int i = m - 1; i >= 0; i--) {
            long x = sum / n;
            if (batteries[i] <= x) {
                return x;
            }
            sum -= batteries[i];
            n--;
        }
        return -1;
    }
}

性能

2872.可以被K整除连通块的最大数目

目标

给你一棵 n 个节点的无向树,节点编号为 0 到 n - 1 。给你整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 有一条边。

同时给你一个下标从 0 开始长度为 n 的整数数组 values ,其中 values[i] 是第 i 个节点的 值 。再给你一个整数 k 。

你可以从树中删除一些边,也可以一条边也不删,得到若干连通块。一个 连通块的值 定义为连通块中所有节点值之和。如果所有连通块的值都可以被 k 整除,那么我们说这是一个 合法分割 。

请你返回所有合法分割中,连通块数目的最大值 。

示例 1:

输入:n = 5, edges = [[0,2],[1,2],[1,3],[2,4]], values = [1,8,1,4,4], k = 6
输出:2
解释:我们删除节点 1 和 2 之间的边。这是一个合法分割,因为:
- 节点 1 和 3 所在连通块的值为 values[1] + values[3] = 12 。
- 节点 0 ,2 和 4 所在连通块的值为 values[0] + values[2] + values[4] = 6 。
最多可以得到 2 个连通块的合法分割。

示例 2:

输入:n = 7, edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]], values = [3,0,6,1,5,2,1], k = 3
输出:3
解释:我们删除节点 0 和 2 ,以及节点 0 和 1 之间的边。这是一个合法分割,因为:
- 节点 0 的连通块的值为 values[0] = 3 。
- 节点 2 ,5 和 6 所在连通块的值为 values[2] + values[5] + values[6] = 9 。
- 节点 1 ,3 和 4 的连通块的值为 values[1] + values[3] + values[4] = 6 。
最多可以得到 3 个连通块的合法分割。

说明:

  • 1 <= n <= 3 * 10^4
  • edges.length == n - 1
  • edges[i].length == 2
  • 0 <= ai, bi < n
  • values.length == n
  • 0 <= values[i] <= 10^9
  • 1 <= k <= 10^9
  • values 之和可以被 k 整除。
  • 输入保证 edges 是一棵无向树。

思路

有一个节点数量为 n 的无向树,树中节点之和可以被 k 整除,现在需要对树进行划分,要求每一个连通块中的节点和也能够被 k 整除,求最大的连通块个数。

dfs 遍历树,如果子树节点和能够整除 k 则可以与父节点断开,删除边数加 1,最终连通分量个数是删除的边数加 1

代码


/**
 * @date 2025-11-28 9:31
 */
public class MaxKDivisibleComponents2872 {

    int res = 0;

    public int maxKDivisibleComponents(int n, int[][] edges, int[] values, int k) {
        List<Integer>[] g = new ArrayList[n];
        Arrays.setAll(g, x -> new ArrayList<>());
        for (int[] edge : edges) {
            g[edge[0]].add(edge[1]);
            g[edge[1]].add(edge[0]);
        }
        dfs(0, -1, g, values, k);
        return res + 1;
    }

    public int dfs(int i, int fa, List<Integer>[] g, int[] values, int k) {
        int sum = values[i];
        for (Integer next : g[i]) {
            if (next == fa) {
                continue;
            }
            int subSum = dfs(next, i, g, values, k);
            if (subSum % k == 0) {
                res++;
            } else {
                sum = (sum + subSum) % k;
            }
        }
        return sum % k;
    }

}

性能

3381.长度可被K整除的子数组的最大元素和

目标

给你一个整数数组 nums 和一个整数 k 。

返回 nums 中一个 非空子数组 的 最大 和,要求该子数组的长度可以 被 k 整除。

示例 1:

输入: nums = [1,2], k = 1
输出: 3
解释:
子数组 [1, 2] 的和为 3,其长度为 2,可以被 1 整除。

示例 2:

输入: nums = [-1,-2,-3,-4,-5], k = 4
输出: -10
解释:
满足题意且和最大的子数组是 [-1, -2, -3, -4],其长度为 4,可以被 4 整除。

示例 3:

输入: nums = [-5,1,2,-3,4], k = 2
输出: 4
解释:
满足题意且和最大的子数组是 [1, 2, -3, 4],其长度为 4,可以被 2 整除。

说明:

  • 1 <= k <= nums.length <= 2 * 10^5
  • -10^9 <= nums[i] <= 10^9

思路

计算长度能被 k 整除的子数组的最大元素和。

核心点是维护同余前缀和的最小值。

也有网友使用滑窗加动态规划来做,滑窗计算 长度为 k 的子数组和,动态规划累加长度 m * k 的子数组和,这里使用了贪心策略,如果前面的子数组和小于 0,直接重置为 0

代码


/**
 * @date 2025-11-27 9:06
 */
public class MaxSubarraySum3381 {

    public long maxSubarraySum(int[] nums, int k) {
        int n = nums.length;
        long[] prefix = new long[n + 1];
        for (int i = 1; i <= n; i++) {
            prefix[i] = prefix[i - 1] + nums[i - 1];
        }
        long[] minPrefix = new long[k];
        Arrays.fill(minPrefix, Long.MAX_VALUE / 2);
        long res = Long.MIN_VALUE;
        for (int i = 0; i <= n; i++) {
            int rem = i % k;
            res = Math.max(res, prefix[i] - minPrefix[rem]);
            minPrefix[rem] = Math.min(minPrefix[rem], prefix[i]);
        }
        return res;
    }

}

性能