1299.将每个元素替换为右侧最大元素

目标

给你一个数组 arr ,请你将每个元素用它右边最大的元素替换,如果是最后一个元素,用 -1 替换。

完成所有替换操作后,请你返回这个数组。

示例 1:

输入:arr = [17,18,5,4,6,1]
输出:[18,6,6,6,1,-1]
解释:
- 下标 0 的元素 --> 右侧最大元素是下标 1 的元素 (18)
- 下标 1 的元素 --> 右侧最大元素是下标 4 的元素 (6)
- 下标 2 的元素 --> 右侧最大元素是下标 4 的元素 (6)
- 下标 3 的元素 --> 右侧最大元素是下标 4 的元素 (6)
- 下标 4 的元素 --> 右侧最大元素是下标 5 的元素 (1)
- 下标 5 的元素 --> 右侧没有其他元素,替换为 -1

示例 2:

输入:arr = [400]
输出:[-1]
解释:下标 0 的元素右侧没有其他元素。

说明:

  • 1 <= arr.length <= 10^4
  • 1 <= arr[i] <= 10^5

思路

将数组中的元素替换为其后面元素的最大值。

最大值不算当前元素,因此在将后面元素最大值赋值给当前元素时会丢失当前元素,导致前面元素的最大值丢失。而如果先将当前元素与后续元素最大值进行更新,最大值就就包含了当前元素。因此需要临时变量保存当前元素值,再用临时变量更新最大值。

代码


/**
 * @date 2025-02-16 17:28
 */
public class ReplaceElements1299 {

    public int[] replaceElements(int[] arr) {
        int n = arr.length;
        int max = -1;
        for (int i = n - 1; i >= 0; i--) {
            int tmp = arr[i];
            arr[i] = max;
            max = Math.max(tmp, max);
        }
        return arr;
    }
}

性能

1706.球会落何处

目标

用一个大小为 m x n 的二维网格 grid 表示一个箱子。你有 n 颗球。箱子的顶部和底部都是开着的。

箱子中的每个单元格都有一个对角线挡板,跨过单元格的两个角,可以将球导向左侧或者右侧。

  • 将球导向右侧的挡板跨过左上角和右下角,在网格中用 1 表示。
  • 将球导向左侧的挡板跨过右上角和左下角,在网格中用 -1 表示。

在箱子每一列的顶端各放一颗球。每颗球都可能卡在箱子里或从底部掉出来。如果球恰好卡在两块挡板之间的 "V" 形图案,或者被一块挡导向到箱子的任意一侧边上,就会卡住。

返回一个大小为 n 的数组 answer ,其中 answer[i] 是球放在顶部的第 i 列后从底部掉出来的那一列对应的下标,如果球卡在盒子里,则返回 -1 。

示例 1:

输入:grid = [[1,1,1,-1,-1],[1,1,1,-1,-1],[-1,-1,-1,1,1],[1,1,1,1,-1],[-1,-1,-1,-1,-1]]
输出:[1,-1,-1,-1,-1]
解释:示例如图:
b0 球开始放在第 0 列上,最终从箱子底部第 1 列掉出。
b1 球开始放在第 1 列上,会卡在第 2、3 列和第 1 行之间的 "V" 形里。
b2 球开始放在第 2 列上,会卡在第 2、3 列和第 0 行之间的 "V" 形里。
b3 球开始放在第 3 列上,会卡在第 2、3 列和第 0 行之间的 "V" 形里。
b4 球开始放在第 4 列上,会卡在第 2、3 列和第 1 行之间的 "V" 形里。

示例 2:

输入:grid = [[-1]]
输出:[-1]
解释:球被卡在箱子左侧边上。

示例 3:

输入:grid = [[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1]]
输出:[0,1,2,3,4,-1]

说明:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 100
  • grid[i][j] 为 1 或 -1

思路

矩阵 m x n 上方有 n 个球,矩阵元素值为 1 表示格子有 左上右下 的斜线挡板,值为 -1 表示有 左下右上 的斜线挡板。返回 n 个球下落的出口下标,如果被卡在箱子中用 -1 表示。

直接根据题意模拟即可,如果当前格子元素值为 1,判断其右侧格子(如果有的话),如果为 -1 则卡住,否则下落到 (i + 1, j + 1), 当行下标等于 m - 1 时,判断出口记录列下标即可。

代码


/**
 * @date 2025-02-15 20:33
 */
public class FindBall1706 {

    public int[] findBall_v2(int[][] grid) {
        int n = grid[0].length;
        int[] res = new int[n];
        for (int j = 0; j < n; j++) {
            res[j] = fall(grid, j);
        }
        return res;
    }

    public int fall(int[][] grid, int pos){
        int m = grid.length;
        int n = grid[0].length;
        for (int i = 0; i < m; i++) {
            int offset = grid[i][pos];
            pos += offset;
            if (pos == n || pos < 0 || grid[i][pos] != offset) {
                pos = -1;
                break;
            }
        }
        return pos;
    }

    public int[] findBall(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        int[] res = new int[n];
        for (int j = 0; j < n; j++) {
            int pos = j;
            for (int i = 0; i < m; i++) {
                if (grid[i][pos] == 1 && (pos == n - 1 || grid[i][pos + 1] == -1)) {
                    pos = -1;
                    break;
                } else if (grid[i][pos] == -1 && (pos == 0 || grid[i][pos - 1] == 1)) {
                    pos = -1;
                    break;
                } else {
                    pos += grid[i][pos];
                }
            }
            res[j] = pos;
        }
        return res;
    }

}

性能

3066.超过阈值的最少操作数II

目标

给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。

一次操作中,你将执行:

  • 选择 nums 中最小的两个整数 x 和 y 。
  • 将 x 和 y 从 nums 中删除。
  • 将 min(x, y) * 2 + max(x, y) 添加到数组中的任意位置。

注意,只有当 nums 至少包含两个元素时,你才可以执行以上操作。

你需要使数组中的所有元素都大于或等于 k ,请你返回需要的 最少 操作次数。

示例 1:

输入:nums = [2,11,10,1,3], k = 10
输出:2
解释:第一次操作中,我们删除元素 1 和 2 ,然后添加 1 * 2 + 2 到 nums 中,nums 变为 [4, 11, 10, 3] 。
第二次操作中,我们删除元素 3 和 4 ,然后添加 3 * 2 + 4 到 nums 中,nums 变为 [10, 11, 10] 。
此时,数组中的所有元素都大于等于 10 ,所以我们停止操作。
使数组中所有元素都大于等于 10 需要的最少操作次数为 2 。

示例 2:

输入:nums = [1,1,2,4,9], k = 20
输出:4
解释:第一次操作后,nums 变为 [2, 4, 9, 3] 。
第二次操作后,nums 变为 [7, 4, 9] 。
第三次操作后,nums 变为 [15, 9] 。
第四次操作后,nums 变为 [33] 。
此时,数组中的所有元素都大于等于 20 ,所以我们停止操作。
使数组中所有元素都大于等于 20 需要的最少操作次数为 4 。

说明:

  • 2 <= nums.length <= 2 * 10^5
  • 1 <= nums[i] <= 10^9
  • 1 <= k <= 10^9
  • 输入保证答案一定存在,也就是说一定存在一个操作序列使数组中所有元素都大于等于 k 。

思路

求使数组 nums 中所有元素均大于等于 k 的操作次数。每次操作可以将数组中最小的两个元素删除,并将 min(x, y) * 2 + max(x, y) 加入数组。

使用最小堆模拟即可

代码


/**
 * @date 2025-01-14 8:51
 */
public class MinOperations3066 {

    public int minOperations(int[] nums, int k) {
        PriorityQueue<Long> q = new PriorityQueue<>();
        for (int num : nums) {
            q.offer((long) num);
        }
        int res = 0;
        while (q.size() >= 2) {
            Long a = q.poll();
            Long b = q.poll();
            if (a >= k) {
                break;
            }
            q.offer(a * 2L + b);
            res++;
        }
        return res;
    }
}

性能

2264.字符串中最大的3位相同数字

目标

给你一个字符串 num ,表示一个大整数。如果一个整数满足下述所有条件,则认为该整数是一个 优质整数 :

  • 该整数是 num 的一个长度为 3 的 子字符串 。
  • 该整数由唯一一个数字重复 3 次组成。

以字符串形式返回 最大的优质整数 。如果不存在满足要求的整数,则返回一个空字符串 "" 。

注意:

  • 子字符串 是字符串中的一个连续字符序列。
  • num 或优质整数中可能存在 前导零 。

示例 1:

输入:num = "6777133339"
输出:"777"
解释:num 中存在两个优质整数:"777" 和 "333" 。
"777" 是最大的那个,所以返回 "777" 。

示例 2:

输入:num = "2300019"
输出:"000"
解释:"000" 是唯一一个优质整数。

示例 3:

输入:num = "42352338"
输出:""
解释:不存在长度为 3 且仅由一个唯一数字组成的整数。因此,不存在优质整数。

说明:

  • 3 <= num.length <= 1000
  • num 仅由数字(0 - 9)组成

思路

判断字符串中是否存在 三个连续相同的数字,如果有多个返回数字最大的那个。

可以使用一个变量记录连续相同的字符个数,如果不同就重置 cnt 为 1。

代码


/**
 * @date 2025-01-08 8:48
 */
public class LargestGoodInteger2264 {

    public String largestGoodInteger(String num) {
        char c = 0;
        int n = num.length();
        int cnt = 1;
        for (int i = 1; i < n; i++) {
            if (num.charAt(i) == num.charAt(i - 1)) {
                cnt++;
            } else {
                cnt = 1;
                continue;
            }
            if (cnt == 3 && c < num.charAt(i)) {
                c = num.charAt(i);
            }
        }
        return c > 0 ? new String(new char[]{c, c, c}) : "";
    }

}

性能

3019.按键变更的次数

目标

给你一个下标从 0 开始的字符串 s ,该字符串由用户输入。按键变更的定义是:使用与上次使用的按键不同的键。例如 s = "ab" 表示按键变更一次,而 s = "bBBb" 不存在按键变更。

返回用户输入过程中按键变更的次数。

注意:shift 或 caps lock 等修饰键不计入按键变更,也就是说,如果用户先输入字母 'a' 然后输入字母 'A' ,不算作按键变更。

示例 1:

输入:s = "aAbBcC"
输出:2
解释: 
从 s[0] = 'a' 到 s[1] = 'A',不存在按键变更,因为不计入 caps lock 或 shift 。
从 s[1] = 'A' 到 s[2] = 'b',按键变更。
从 s[2] = 'b' 到 s[3] = 'B',不存在按键变更,因为不计入 caps lock 或 shift 。
从 s[3] = 'B' 到 s[4] = 'c',按键变更。
从 s[4] = 'c' 到 s[5] = 'C',不存在按键变更,因为不计入 caps lock 或 shift 。

示例 2:

输入:s = "AaAaAaaA"
输出:0
解释: 不存在按键变更,因为这个过程中只按下字母 'a' 和 'A' ,不需要进行按键变更。

说明:

  • 1 <= s.length <= 100
  • s 仅由英文大写字母和小写字母组成。

思路

已知字符串 s,计算用户输入该字符串时按键的变更次数,不区分大小写。

根据题意比较相邻字符忽略大小写后是否相同,可以使用 |32 将字符都转为小写后比较。

代码


/**
 * @date 2025-01-07 8:46
 */
public class CountKeyChanges3019 {

    /**
     * A 65 010 00001 Z 90  010 11010
     * a 97 011 00001 Z 122 011 11010
     * 31   000 11111
     * 32   001 00000
     * 只有低 5 位不同,因此我们可以 &31 或者 |32
     */
    public int countKeyChanges_v1(String s) {
        int res = 0;
        int n = s.length();
        for (int i = 1; i < n; i++) {
            if ((s.charAt(i) | 32) != (s.charAt(i - 1) | 32)) {
                res++;
            }
        }
        return res;
    }

}

性能

2241.设计一个ATM机器

目标

一个 ATM 机器,存有 5 种面值的钞票:20 ,50 ,100 ,200 和 500 美元。初始时,ATM 机是空的。用户可以用它存或者取任意数目的钱。

取款时,机器会优先取 较大 数额的钱。

  • 比方说,你想取 $300 ,并且机器里有 2 张 $50 的钞票,1 张 $100 的钞票和1 张 $200 的钞票,那么机器会取出 $100 和 $200 的钞票。
  • 但是,如果你想取 $600 ,机器里有 3 张 $200 的钞票和1 张 $500 的钞票,那么取款请求会被拒绝,因为机器会先取出 $500 的钞票,然后无法取出剩余的 $100 。注意,因为有 $500 钞票的存在,机器 不能 取 $200 的钞票。

请你实现 ATM 类:

  • ATM() 初始化 ATM 对象。
  • void deposit(int[] banknotesCount) 分别存入 $20 ,$50,$100,$200 和 $500 钞票的数目。
  • int[] withdraw(int amount) 返回一个长度为 5 的数组,分别表示 $20 ,$50,$100 ,$200 和 $500 钞票的数目,并且更新 ATM 机里取款后钞票的剩余数量。如果无法取出指定数额的钱,请返回 [-1] (这种情况下 不 取出任何钞票)。

示例 1:

输入:
["ATM", "deposit", "withdraw", "deposit", "withdraw", "withdraw"]
[[], [[0,0,1,2,1]], [600], [[0,1,0,1,1]], [600], [550]]
输出:
[null, null, [0,0,1,0,1], null, [-1], [0,1,0,0,1]]
解释:
ATM atm = new ATM();
atm.deposit([0,0,1,2,1]); // 存入 1 张 $100 ,2 张 $200 和 1 张 $500 的钞票。
atm.withdraw(600);        // 返回 [0,0,1,0,1] 。机器返回 1 张 $100 和 1 张 $500 的钞票。机器里剩余钞票的数量为 [0,0,0,2,0] 。
atm.deposit([0,1,0,1,1]); // 存入 1 张 $50 ,1 张 $200 和 1 张 $500 的钞票。
                          // 机器中剩余钞票数量为 [0,1,0,3,1] 。
atm.withdraw(600);        // 返回 [-1] 。机器会尝试取出 $500 的钞票,然后无法得到剩余的 $100 ,所以取款请求会被拒绝。
                          // 由于请求被拒绝,机器中钞票的数量不会发生改变。
atm.withdraw(550);        // 返回 [0,1,0,0,1] ,机器会返回 1 张 $50 的钞票和 1 张 $500 的钞票。

说明:

  • banknotesCount.length == 5
  • 0 <= banknotesCount[i] <= 10^9
  • 1 <= amount <= 10^9
  • 总共 最多有 5000 次 withdraw 和 deposit 的调用。
  • 函数 withdraw 和 deposit 至少各有 一次 调用。

思路

设计一个ATM机,支持存入面额为 20,50,100,200,500 的钞票,取款时优先使用大额的钞票,即只要存在大额的钞票,不论最终能否凑成给定的数额,都要尽量多的取。如果无法取出指定数额的钱,返回 [-1],否则返回组合方案。

直接根据题意模拟即可,可以定义一个面额数组来避免硬编码。

代码


/**
 * @date 2025-01-05 15:10
 */
public class ATM {

    public int[] cnt = new int[5];
    public int[] value = new int[]{20, 50, 100, 200, 500};

    public ATM() {

    }

    public void deposit(int[] banknotesCount) {
        for (int i = 0; i < 5; i++) {
            cnt[i] += banknotesCount[i];
        }
    }

    public int[] withdraw(int amount) {
        int[] res = new int[5];
        for (int i = 4; i >= 0; i--) {
            res[i] = Math.min(amount / value[i], cnt[i]);
            amount -= res[i] * value[i];
        }
        if (amount == 0) {
            for (int i = 0; i < 5; i++) {
                cnt[i] -= res[i];
            }
            return res;
        } else {
            return new int[]{-1};
        }
    }
}

性能

1387.将整数按权重排序

目标

我们将整数 x 的 权重 定义为按照下述规则将 x 变成 1 所需要的步数:

  • 如果 x 是偶数,那么 x = x / 2
  • 如果 x 是奇数,那么 x = 3 * x + 1

比方说,x=3 的权重为 7 。因为 3 需要 7 步变成 1 (3 --> 10 --> 5 --> 16 --> 8 --> 4 --> 2 --> 1)。

给你三个整数 lo, hi 和 k 。你的任务是将区间 [lo, hi] 之间的整数按照它们的权重 升序排序 ,如果大于等于 2 个整数有 相同 的权重,那么按照数字自身的数值 升序排序 。

请你返回区间 [lo, hi] 之间的整数按权重排序后的第 k 个数。

注意,题目保证对于任意整数 x (lo <= x <= hi) ,它变成 1 所需要的步数是一个 32 位有符号整数。

示例 1:

输入:lo = 12, hi = 15, k = 2
输出:13
解释:12 的权重为 9(12 --> 6 --> 3 --> 10 --> 5 --> 16 --> 8 --> 4 --> 2 --> 1)
13 的权重为 9
14 的权重为 17
15 的权重为 17
区间内的数按权重排序以后的结果为 [12,13,14,15] 。对于 k = 2 ,答案是第二个整数也就是 13 。
注意,12 和 13 有相同的权重,所以我们按照它们本身升序排序。14 和 15 同理。

示例 2:

输入:lo = 7, hi = 11, k = 4
输出:7
解释:区间内整数 [7, 8, 9, 10, 11] 对应的权重为 [16, 3, 19, 6, 14] 。
按权重排序后得到的结果为 [8, 10, 11, 7, 9] 。
排序后数组中第 4 个数字为 7 。

说明:

1 <= lo <= hi <= 1000
1 <= k <= hi - lo + 1

思路

定义整数 x 的权重为 将其变为 1 的操作次数,根据整数的奇偶性,可以执行不同的操作:

  • x 为偶数,x -> x / 2
  • x 为奇数,x -> 3 * x + 1

返回区间 [lo, hi] 之间的整数按权重排序后的第 k 个数。

根据题意模拟计算出每个数字的权重,将它和数字一起保存起来,然后按照权重、数值排序即可。

可以预处理 1 ~ 1000 内的所有权重,保存中间结果减少重复计算。

看到题目时我们都会有这样的疑问,如何证明 x 最终都会回到 1?有网友提到题目中的操作与考拉兹猜想(Collatz conjecture)的操作一样,由于操作过程与冰雹的形成和下落过程相似,因此也叫冰雹猜想。

代码


/**
 * @date 2024-12-22 16:20
 */
public class GetKth1387 {

    public int getKth(int lo, int hi, int k) {
        int n = hi - lo + 1;
        int[][] w = new int[n][2];
        int c = 0;
        for (int i = lo; i <= hi; i++) {
            w[c++] = new int[]{getWeight(i), i};
        }
        Arrays.sort(w, (a, b) -> {
            int compare = a[0] - b[0];
            if (compare != 0) {
                return compare;
            }
            return a[1] - b[1];
        });
        return w[k - 1][1];
    }

    public int getWeight(int x) {
        int cnt = 0;
        while (x > 1) {
            if (x % 2 == 0) {
                x >>= 1;
            } else {
                x = 3 * x + 1;
            }
            cnt++;
        }
        return cnt;
    }
}

性能

3285.找到稳定山的下标

目标

有 n 座山排成一列,每座山都有一个高度。给你一个整数数组 height ,其中 height[i] 表示第 i 座山的高度,再给你一个整数 threshold 。

对于下标不为 0 的一座山,如果它左侧相邻的山的高度 严格大于 threshold ,那么我们称它是 稳定 的。我们定义下标为 0 的山 不是 稳定的。

请你返回一个数组,包含所有 稳定 山的下标,你可以以 任意 顺序返回下标数组。

示例 1:

输入:height = [1,2,3,4,5], threshold = 2
输出:[3,4]
解释:
下标为 3 的山是稳定的,因为 height[2] == 3 大于 threshold == 2 。
下标为 4 的山是稳定的,因为 height[3] == 4 大于 threshold == 2.

示例 2:

输入:height = [10,1,10,1,10], threshold = 3
输出:[1,3]

示例 3:

输入:height = [10,1,10,1,10], threshold = 10
输出:[]

说明:

  • 2 <= n == height.length <= 100
  • 1 <= height[i] <= 100
  • 1 <= threshold <= 100

思路

返回数组的稳定下标,如果一个元素的左侧相邻元素严格大于 threshold 称当前元素是稳定的。

代码


/**
 * @date 2024-12-19 21:50
 */
public class StableMountains3285 {

    public List<Integer> stableMountains(int[] height, int threshold) {
        List<Integer> res = new ArrayList<>();
        int prev = height[0];
        int n = height.length;
        for (int i = 1; i < n; i++) {
            if (prev > threshold) {
                res.add(i);
            }
            prev = height[i];
        }
        return res;
    }
}

性能

2717.半有序排列

目标

给你一个下标从 0 开始、长度为 n 的整数排列 nums 。

如果排列的第一个数字等于 1 且最后一个数字等于 n ,则称其为 半有序排列 。你可以执行多次下述操作,直到将 nums 变成一个 半有序排列 :

  • 选择 nums 中相邻的两个元素,然后交换它们。

返回使 nums 变成 半有序排列 所需的最小操作次数。

排列 是一个长度为 n 的整数序列,其中包含从 1 到 n 的每个数字恰好一次。

示例 1:

输入:nums = [2,1,4,3]
输出:2
解释:可以依次执行下述操作得到半有序排列:
1 - 交换下标 0 和下标 1 对应元素。排列变为 [1,2,4,3] 。
2 - 交换下标 2 和下标 3 对应元素。排列变为 [1,2,3,4] 。
可以证明,要让 nums 成为半有序排列,不存在执行操作少于 2 次的方案。

示例 2:

输入:nums = [2,4,1,3]
输出:3
解释:
可以依次执行下述操作得到半有序排列:
1 - 交换下标 1 和下标 2 对应元素。排列变为 [2,1,4,3] 。
2 - 交换下标 0 和下标 1 对应元素。排列变为 [1,2,4,3] 。
3 - 交换下标 2 和下标 3 对应元素。排列变为 [1,2,3,4] 。
可以证明,要让 nums 成为半有序排列,不存在执行操作少于 3 次的方案。

示例 3:

输入:nums = [1,3,4,2,5]
输出:0
解释:这个排列已经是一个半有序排列,无需执行任何操作。

说明:

  • 2 <= nums.length == n <= 50
  • 1 <= nums[i] <= 50
  • nums 是一个 排列

思路

有一个数组 nums,求将最小值移动到第一个位置,最大值移动到最后一个位置需要的最小操作次数。

我们可以记录数组中第一个出现的最小值以及最后一个出现的最大值的下标,记为 minIndexmaxIndex,如果 minIndex > maxIndex,最少交换次数为 minIndex + n - maxIndex - 2,否则为 minIndex + n - maxIndex - 1

注意:交换次数等于 minIndex 前面的元素个数 加上 maxIndex 后面的元素个数,如果 minIndex > maxIndex,当我们将最小值放到第一个位置时,maxIndex 已经向后移了一位。

代码


/**
 * @date 2024-12-11 8:47
 */
public class SemiOrderedPermutation2717 {

    public int semiOrderedPermutation(int[] nums) {
        int n = nums.length;
        int minIndex = 0;
        int maxIndex = 0;
        for (int i = 0; i < n; i++) {
            if (nums[i] < nums[minIndex]) {
                minIndex = i;
            } else if (nums[i] >= nums[maxIndex]) {
                maxIndex = i;
            }
        }
        int res = minIndex + n - maxIndex - 1;
        return minIndex > maxIndex ? res - 1 : res;
    }
}

性能

2056.棋盘上有效移动组合的数目

目标

有一个 8 x 8 的棋盘,它包含 n 个棋子(棋子包括车,后和象三种)。给你一个长度为 n 的字符串数组 pieces ,其中 pieces[i] 表示第 i 个棋子的类型(车,后或象)。除此以外,还给你一个长度为 n 的二维整数数组 positions ,其中 positions[i] = [ri, ci] 表示第 i 个棋子现在在棋盘上的位置为 (ri, ci) ,棋盘下标从 1 开始。

棋盘上每个棋子都可以移动 至多一次 。每个棋子的移动中,首先选择移动的 方向 ,然后选择 移动的步数 ,同时你要确保移动过程中棋子不能移到棋盘以外的地方。棋子需按照以下规则移动:

  • 车可以 水平或者竖直 从 (r, c) 沿着方向 (r+1, c),(r-1, c),(r, c+1) 或者 (r, c-1) 移动。
  • 后可以 水平竖直或者斜对角 从 (r, c) 沿着方向 (r+1, c),(r-1, c),(r, c+1),(r, c-1),(r+1, c+1),(r+1, c-1),(r-1, c+1),(r-1, c-1) 移动。
  • 象可以 斜对角 从 (r, c) 沿着方向 (r+1, c+1),(r+1, c-1),(r-1, c+1),(r-1, c-1) 移动。

移动组合 包含所有棋子的 移动 。每一秒,每个棋子都沿着它们选择的方向往前移动 一步 ,直到它们到达目标位置。所有棋子从时刻 0 开始移动。如果在某个时刻,两个或者更多棋子占据了同一个格子,那么这个移动组合 不有效 。

请你返回 有效 移动组合的数目。

注意:

  • 初始时,不会有两个棋子 在 同一个位置。
  • 有可能在一个移动组合中,有棋子不移动。
  • 如果两个棋子 直接相邻 且两个棋子下一秒要互相占据对方的位置,可以将它们在同一秒内 交换位置。

示例 1:

输入:pieces = ["rook"], positions = [[1,1]]
输出:15
解释:上图展示了棋子所有可能的移动。

示例 2:

输入:pieces = ["queen"], positions = [[1,1]]
输出:22
解释:上图展示了棋子所有可能的移动。

示例 3:

输入:pieces = ["bishop"], positions = [[4,3]]
输出:12
解释:上图展示了棋子所有可能的移动。

示例 4:

输入:pieces = ["rook","rook"], positions = [[1,1],[8,8]]
输出:223
解释:每个车有 15 种移动,所以总共有 15 * 15 = 225 种移动组合。
但是,有两个是不有效的移动组合:
- 将两个车都移动到 (8, 1) ,会导致它们在同一个格子相遇。
- 将两个车都移动到 (1, 8) ,会导致它们在同一个格子相遇。
所以,总共有 225 - 2 = 223 种有效移动组合。
注意,有两种有效的移动组合,分别是一个车在 (1, 8) ,另一个车在 (8, 1) 。
即使棋盘状态是相同的,这两个移动组合被视为不同的,因为每个棋子移动操作是不相同的。

示例 5:

输入:pieces = ["queen","bishop"], positions = [[5,7],[3,4]]
输出:281
解释:总共有 12 * 24 = 288 种移动组合。
但是,有一些不有效的移动组合:
- 如果后停在 (6, 7) ,它会阻挡象到达 (6, 7) 或者 (7, 8) 。
- 如果后停在 (5, 6) ,它会阻挡象到达 (5, 6) ,(6, 7) 或者 (7, 8) 。
- 如果象停在 (5, 2) ,它会阻挡后到达 (5, 2) 或者 (5, 1) 。
在 288 个移动组合当中,281 个是有效的。

说明:

  • n == pieces.length
  • n == positions.length
  • 1 <= n <= 4
  • pieces 只包含字符串 "rook" ,"queen" 和 "bishop" 。
  • 棋盘上最多只有一个后。
  • 1 <= ri, ci <= 8
  • 每一个 positions[i] 互不相同。

思路

有一个 8 x 8 的棋盘,行列编号从 1 ~ 8。棋盘上有 n 个棋子,pieces[i] 表示棋子 i 的类型,rook 表示车,queen 表示皇后,bishop 表示象,positions[i] = [ri, ci] 表示棋子 i 所在行编号为 ri,所在列编号为 ci。棋盘上的每个棋子都可以移动 至多 一步,不同的棋子移动方式不同,参考国际象棋。车走竖线或横线,象走斜线,皇后走竖线、横线或斜线,不能跳过其它棋子。

特别注意,我们求的是 有效移动 组合,重点在 移动 而不是最终状态,比如示例4。

棋盘大小固定,考虑车移动或者不移动,它最多有 15 种移动的可能,包括不移动或者移动到相应方向上的其它格子共 1 + 2 * 7 种。由于棋盘是偶数没有中间格子,所以象有 8 + 6 种。同理皇后可能的移动方式最多有 28 种,包括不移动或者移动相应方向上的其它格子 1 + 2 * 7 + 7 + 6 种,如果它位于一条 8 格的对角线上,除去自身还剩 7 格,它所在的另一对角线剩余 6 个格子。

题目描述里面非常让人迷惑的一点是既允许相邻棋子同时交换位置,而示例5又说棋子会阻挡其它棋子通行。这个题的难点在于如果按照棋盘状态去枚举的话,当两个棋子相遇的时候不知道是否应该穿越,如果穿越的话就会移动另一个棋子,如何去重?我们必须将移动的步数考虑进去,如果两个棋子相遇时都没有到达目标位置那么它们可以穿过。否则,某个棋子提前停下,另一个棋子行进到相同的位置发生碰撞,不符合题目条件。

参考题解思路写出来了。

代码


/**
 * @date 2024-12-04 14:24
 */
public class CountCombinations2056 {

    public static class Move {
        public int x;
        public int y;
        public int dx;
        public int dy;
        public int step;

        public Move(int x, int y, int dx, int dy, int step) {
            this.x = x;
            this.y = y;
            this.dx = dx;
            this.dy = dy;
            this.step = step;
        }
    }

    public int[][] rookDir = new int[][]{{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
    public int[][] bishopDir = new int[][]{{-1, -1}, {1, 1}, {1, -1}, {-1, 1}};
    public int[][] queenDir = new int[][]{{-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {1, 1}, {1, -1}, {-1, 1}};

    /**
     * 预处理每个棋子可行的移动方案、起点、方向、步数
     */
    public int countCombinations(String[] pieces, int[][] positions) {
        int n = pieces.length;
        Move[][] moves = new Move[n][];
        for (int i = 0; i < n; i++) {
            moves[i] = generateAllValidMove(pieces[i], positions[i]);
        }
        Move[] curMove = new Move[n];
        return dfs(0, n, curMove, moves);
    }

    /**
     * 回溯,先从棋子0中选一个可行的移动方案,然后进入下一层,
     * 从棋子1中选一个可行的移动方案,判断当前方案与前面所选的移动方案是否存在某一时刻使得两个棋子占据同一个格子
     * 如果不存在就进入下一层,否则枚举另一个方案。
     * i 表示枚举第 i 个棋子的合法移动方案
     * curMove 表示前面棋子选择的移动方案,用于下一层比较移动方案是否合法
     * moves 表示所有棋子的移动方案
     */
    public int dfs(int i, int n, Move[] curMove, Move[][] moves) {
        if (i == n) {
            return 1;
        }
        int cnt = 0;
        here:
        for (Move move : moves[i]) {
            for (int j = 0; j < i; j++) {
                if (!valid(move, curMove[j])) {
                    continue here;
                }
            }
            curMove[i] = move;
            cnt += dfs(i + 1, n, curMove, moves);
        }
        return cnt;
    }

    public boolean valid(Move move, Move curMove) {
        int x1 = move.x;
        int y1 = move.y;
        int x2 = curMove.x;
        int y2 = curMove.y;
        // 步数小的会提前停下来,如果它们坐标相同说明存在在某一时刻使得两个棋子移动到同一个位置上,不合法
        for (int i = 0; i < Math.max(move.step, curMove.step); i++) {
            if (i < move.step) {
                x1 += move.dx;
                y1 += move.dy;
            }
            if (i < curMove.step) {
                x2 += curMove.dx;
                y2 += curMove.dy;
            }
            if (x1 == x2 && y1 == y2) {
                return false;
            }
        }
        return true;
    }

    /**
     * 生成该棋子所有可能的移动方案
     * 起点,方向,步数
     */
    public Move[] generateAllValidMove(String pieces, int[] positions) {
        int[][] directions = null;
        switch (pieces) {
            case "rook":
                directions = rookDir;
                break;
            case "bishop":
                directions = bishopDir;
                break;
            case "queen":
                directions = queenDir;
                break;
            default:
        }
        if (directions == null) {
            return null;
        }
        List<Move> moves = new ArrayList<>();
        int x = positions[0];
        int y = positions[1];
        // 将不移动的情况加入集合
        moves.add(new Move(x, y, 0, 0, 0));
        // 遍历该棋子允许的行进方向,
        for (int[] dir : directions) {
            int dx = dir[0];
            int dy = dir[1];
            int step = 0;
            x = positions[0] + dx;
            y = positions[1] + dy;
            while (x > 0 && x <= 8 && y > 0 && y <= 8) {
                moves.add(new Move(positions[0], positions[1], dx, dy, ++step));
                x += dx;
                y += dy;
            }
        }
        return moves.toArray(new Move[0]);
    }

}

性能