1338.数组大小减半

目标

给你一个整数数组 arr。你可以从中选出一个整数集合,并删除这些整数在数组中的每次出现。

返回 至少 能删除数组中的一半整数的整数集合的最小大小。

示例 1:

输入:arr = [3,3,3,3,5,5,5,2,2,7]
输出:2
解释:选择 {3,7} 使得结果数组为 [5,5,5,2,2]、长度为 5(原数组长度的一半)。
大小为 2 的可行集合有 {3,5},{3,2},{5,2}。
选择 {2,7} 是不可行的,它的结果数组为 [3,3,3,3,5,5,5],新数组长度大于原数组的二分之一。

示例 2:

输入:arr = [7,7,7,7,7,7]
输出:1
解释:我们只能选择集合 {7},结果数组为空。

说明:

  • 1 <= arr.length <= 10^5
  • arr.length 为偶数
  • 1 <= arr[i] <= 10^5

思路

从整数数组中选出一个元素集合,使该集合中元素在原数组中的出现次数超过原数组长度的一半,求集合大小的最小值。

统计每个元素的出现次数,将出现次数从大到小排序,然后开始选元素直到满足题目条件。

代码


/**
 * @date 2024-12-15 0:17
 */
public class MinSetSize1338 {

    public int minSetSize(int[] arr) {
        int n = arr.length;
        int[] cnt = new int[100001];
        for (int i : arr) {
            cnt[i]++;
        }
        PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> b - a);
        for (int i : cnt) {
            if (i > 0) {
                q.offer(i);
            }
        }
        int res = 0;
        int l = 0;
        while (!q.isEmpty()) {
            l += q.poll();
            res++;
            if (l >= n / 2) {
                break;
            }
        }
        return res;
    }
}

性能

3266.K次乘运算后的最终数组II

目标

给你一个整数数组 nums ,一个整数 k 和一个整数 multiplier 。

你需要对 nums 执行 k 次操作,每次操作中:

  • 找到 nums 中的 最小 值 x ,如果存在多个最小值,选择最 前面 的一个。
  • 将 x 替换为 x * multiplier 。

k 次操作以后,你需要将 nums 中每一个数值对 10^9 + 7 取余。

请你返回执行完 k 次乘运算以及取余运算之后,最终的 nums 数组。

示例 1:

输入:nums = [2,1,3,5,6], k = 5, multiplier = 2
输出:[8,4,6,5,6]
解释:
操作 结果
1 次操作后 [2, 2, 3, 5, 6]
2 次操作后 [4, 2, 3, 5, 6]
3 次操作后 [4, 4, 3, 5, 6]
4 次操作后 [4, 4, 6, 5, 6]
5 次操作后 [8, 4, 6, 5, 6]
取余操作后 [8, 4, 6, 5, 6]

示例 2:

输入:nums = [100000,2000], k = 2, multiplier = 1000000
输出:[999999307,999999993]
解释:
操作 结果
1 次操作后 [100000, 2000000000]
2 次操作后 [100000000000, 2000000000]
取余操作后 [999999307, 999999993]

说明:

  • 1 <= nums.length <= 10^4
  • 1 <= nums[i] <= 10^9
  • 1 <= k <= 10^9
  • 1 <= multiplier <= 10^6

思路

有一个数组 nums,我们需要执行 k 次操作,每次操作选择数组中最小元素 min,并将它的值替换为 min * multiplier,返回最终的数组。数据范围比 3264.K次乘运算后的最终数组I 大,multiplier 也大,会溢出,需要进行取余运算。

首先 k 最大 10^9,还沿用昨天模拟的解法会超时。更重要的是,由于乘积很大,我们只能在队列中保存取余后的数据,如果还按找之前模拟来取最小元素就不对了。

我们发现,当执行一些次操作之后,所有元素都会被乘以 multiplier,当 k / n 比较大时,我们可以使用快速幂先计算出 multiplierk/n 幂,然后再与元素相乘。

关键在于何时开始使用上面的思路来计算,考虑 1 2 4 8 16multiplier2,k 为 20

2   2   4   8   16
4   2   4   8   16
4   4   4   8   16
8   4   4   8   16
8   8   4   8   16
8   8   8   8   16
16  8   8   8   16
16  16  8   8   16
16  16  16  8   16
16  16  16  16  16

可以发现 当前数组 最小值 乘以 multiplier 大于 原数组 元素的 最大值 时,后面再乘以 multiplier 就是每一个元素执行一次了。

因此我们需要先使用堆模拟前面几次操作,直到满足上面的条件。注意:堆中数据不能取模,满足条件之前堆中数据使用 long 型不会溢出。

代码


/**
 * @date 2024-12-14 10:31
 */
public class GetFinalState3266 {

    public int[] getFinalState(int[] nums, int k, int multiplier) {
        if (multiplier == 1) {
            return nums;
        }
        int mod = 1000000007;
        int n = nums.length;
        long[] mul = new long[n];
        for (int i = 0; i < n; i++) {
            mul[i] = nums[i];
        }
        PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> {
            long compare = mul[a] - mul[b];
            if (compare != 0) {
                return (int) compare;
            }
            return a - b;
        });
        long max = 0;
        for (int i = 0; i < n; i++) {
            q.offer(i);
            max = Math.max(max, nums[i]);
        }
        int i = 0;
        for (; i < k; i++) {
            if (mul[q.peek()] * (long) multiplier > max) {
                break;
            }
            Integer index = q.poll();
            mul[index] = mul[index] * multiplier;
            q.offer(index);
        }
        int remainder = k - i;
        if (remainder >= n) {
            long pow = pow(multiplier, remainder / n);
            for (int j = 0; j < n; j++) {
                Integer index = q.poll();
                int rem = remainder % n;
                mul[index] = (int) ((mul[index] * pow % mod * (j < rem ? (long) multiplier : 1)) % mod);
            }
        } else {
            for (int j = 0; j < remainder; j++) {
                Integer index = q.poll();
                mul[index] = (int) ((mul[index] * (long) multiplier) % mod);
                q.offer(index);
            }
        }
        for (int j = 0; j < n; j++) {
            nums[j] = (int) mul[j];
        }
        return nums;
    }

    public long pow(long base, int exponent) {
        long res = 1;
        int mod = 1000000007;
        while (exponent > 0) {
            if ((exponent & 1) == 1) {
                res = res * base % mod;
            }
            base = base * base % mod;
            exponent >>= 1;
        }
        return res;
    }

}

性能

3264.K次乘运算后的最终数组I

目标

给你一个整数数组 nums ,一个整数 k 和一个整数 multiplier 。

你需要对 nums 执行 k 次操作,每次操作中:

  • 找到 nums 中的 最小 值 x ,如果存在多个最小值,选择最 前面 的一个。
  • 将 x 替换为 x * multiplier 。

请你返回执行完 k 次乘运算之后,最终的 nums 数组。

示例 1:

输入:nums = [2,1,3,5,6], k = 5, multiplier = 2
输出:[8,4,6,5,6]
解释:
操作 结果
1 次操作后 [2, 2, 3, 5, 6]
2 次操作后 [4, 2, 3, 5, 6]
3 次操作后 [4, 4, 3, 5, 6]
4 次操作后 [4, 4, 6, 5, 6]
5 次操作后 [8, 4, 6, 5, 6]

示例 2:

输入:nums = [1,2], k = 3, multiplier = 4
输出:[16,8]
解释:
操作 结果
1 次操作后 [4, 2]
2 次操作后 [4, 8]
3 次操作后 [16, 8]

说明:

  • 1 <= nums.length <= 100
  • 1 <= nums[i] <= 100
  • 1 <= k <= 10
  • 1 <= multiplier <= 5

思路

有一个数组 nums,我们需要执行 k 次操作,每次操作选择数组中最小元素 min,并将它的值替换为 min * multiplier,返回最终的数组。

使用最小堆,堆中元素为 [value, index],获取堆顶元素,将其值乘以 multiplier 再放回堆中,操作完 k 次之后,遍历堆中元素,根据 index 重写 nums 即可。需要注意处理值相等的情况,堆排序不稳定。

代码


/**
 * @date 2024-12-13 2:13
 */
public class GetFinalState3264 {

    public int[] getFinalState(int[] nums, int k, int multiplier) {
        int n = nums.length;
        // 注意这里需要处理相等的情况,堆排序是不稳定的
        PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> {
            int compare = nums[a] - nums[b];
            if (compare != 0){
                return compare;
            }
            return a - b;
        });
        for (int i = 0; i < n; i++) {
            q.offer(i);
        }
        for (int i = 0; i < k; i++) {
            int index = q.poll();
            nums[index] *= multiplier;
            q.offer(index);
        }
        return nums;
    }
}

性能

871.最低加油次数

目标

汽车从起点出发驶向目的地,该目的地位于出发位置东面 target 英里处。

沿途有加油站,用数组 stations 表示。其中 stations[i] = [positioni, fueli] 表示第 i 个加油站位于出发位置东面 positioni 英里处,并且有 fueli 升汽油。

假设汽车油箱的容量是无限的,其中最初有 startFuel 升燃料。它每行驶 1 英里就会用掉 1 升汽油。当汽车到达加油站时,它可能停下来加油,将所有汽油从加油站转移到汽车中。

为了到达目的地,汽车所必要的最低加油次数是多少?如果无法到达目的地,则返回 -1 。

注意:如果汽车到达加油站时剩余燃料为 0,它仍然可以在那里加油。如果汽车到达目的地时剩余燃料为 0,仍然认为它已经到达目的地。

示例 1:

输入:target = 1, startFuel = 1, stations = []
输出:0
解释:可以在不加油的情况下到达目的地。

示例 2:

输入:target = 100, startFuel = 1, stations = [[10,100]]
输出:-1
解释:无法抵达目的地,甚至无法到达第一个加油站。

示例 3:

输入:target = 100, startFuel = 10, stations = [[10,60],[20,30],[30,30],[60,40]]
输出:2
解释:
出发时有 10 升燃料。
开车来到距起点 10 英里处的加油站,消耗 10 升燃料。将汽油从 0 升加到 60 升。
然后,从 10 英里处的加油站开到 60 英里处的加油站(消耗 50 升燃料),
并将汽油从 10 升加到 50 升。然后开车抵达目的地。
沿途在两个加油站停靠,所以返回 2 。

说明:

  • 1 <= target, startFuel <= 10^9
  • 0 <= stations.length <= 500
  • 1 <= positioni < positioni+1 < target
  • 1 <= fueli < 10^9

思路

已知汽车油耗为 1 英里/升,现在想要开车前往 target 英里外的目的地,出发时车中有 startFuel 升油,沿途有 stations.length 个加油站,stations[i][0] 表示加油站 i 距出发地的距离,stations[i][1] 表示加油站 i 的汽油总量。假设汽车油箱无限大,求到达目的地的最少加油次数,如果无法到达返回 -1

可以将出发点、加油站、目的地画到数轴上,由于油耗为 1 英里/升,有多少升油就可以到达多远的距离。那么问题转化为从 n 个加油站中选取最少的个数,使油箱油量大于等于 target。要使选择的加油站最少,那么应该首选油量多的加油站,前提是能够抵达该加油站。我们可以使用大顶堆维护加油站油量,将能够抵达的加油站放入其中,然后将堆顶的油加入油箱,将新的能够抵达的加油站放入堆中,直到油箱中的油量大于等于 target

代码


/**
 * @date 2024-10-07 21:09
 */
public class MinRefuelStops871 {

    public int minRefuelStops(int target, int startFuel, int[][] stations) {
        PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> b - a);
        int n = stations.length;
        int i = 0;
        int res = 0;
        int fuel = startFuel;
        while (fuel < target) {
            while (i < n && fuel >= stations[i][0]) {
                q.offer(stations[i++][1]);
            }
            if (!q.isEmpty()) {
                fuel += q.poll();
                res++;
                if (fuel >= target) {
                    return res;
                }
            } else if (i == n || fuel < stations[i][0]) {
                // 没有剩余的加油站或者无法抵达
                return -1;
            }
        }
        return res;
    }

}

性能

1845.座位预约管理系统

目标

请你设计一个管理 n 个座位预约的系统,座位编号从 1 到 n 。

请你实现 SeatManager 类:

  • SeatManager(int n) 初始化一个 SeatManager 对象,它管理从 1 到 n 编号的 n 个座位。所有座位初始都是可预约的。
  • int reserve() 返回可以预约座位的 最小编号 ,此座位变为不可预约。
  • void unreserve(int seatNumber) 将给定编号 seatNumber 对应的座位变成可以预约。

示例 1:

输入:
["SeatManager", "reserve", "reserve", "unreserve", "reserve", "reserve", "reserve", "reserve", "unreserve"]
[[5], [], [], [2], [], [], [], [], [5]]
输出:
[null, 1, 2, null, 2, 3, 4, 5, null]

解释:
SeatManager seatManager = new SeatManager(5); // 初始化 SeatManager ,有 5 个座位。
seatManager.reserve();    // 所有座位都可以预约,所以返回最小编号的座位,也就是 1 。
seatManager.reserve();    // 可以预约的座位为 [2,3,4,5] ,返回最小编号的座位,也就是 2 。
seatManager.unreserve(2); // 将座位 2 变为可以预约,现在可预约的座位为 [2,3,4,5] 。
seatManager.reserve();    // 可以预约的座位为 [2,3,4,5] ,返回最小编号的座位,也就是 2 。
seatManager.reserve();    // 可以预约的座位为 [3,4,5] ,返回最小编号的座位,也就是 3 。
seatManager.reserve();    // 可以预约的座位为 [4,5] ,返回最小编号的座位,也就是 4 。
seatManager.reserve();    // 唯一可以预约的是座位 5 ,所以返回 5 。
seatManager.unreserve(5); // 将座位 5 变为可以预约,现在可预约的座位为 [5] 。

说明:

  • 1 <= n <= 10^5
  • 1 <= seatNumber <= n
  • 每一次对 reserve 的调用,题目保证至少存在一个可以预约的座位。
  • 每一次对 unreserve 的调用,题目保证 seatNumber 在调用函数前都是被预约状态。
  • 对 reserve 和 unreserve 的调用 总共 不超过 10^5 次。

思路

设计一个座位预约系统,初始化 n 个座位,可以预约尚未预约的编号最小的座位,支持取消预约操作。

核心是解决取消预约后如何获取编号最小值的问题,可以使用最小堆维护剩余座位。

网友指出,初始化的复杂度与 n 有关,当 n 规模过大时会超时。可以使用最小堆维护取消预订的座位,显然取消预订的座位编号一定小于未被预定的座位编号。记录已预定出去的座位最高位 max,如果堆不为空则取堆顶元素,否则返回 max + 1

代码


/**
 * @date 2024-09-30 21:46
 */
public  class SeatManager {

    private PriorityQueue<Integer> q;

    public SeatManager(int n) {
        q = new PriorityQueue<>();
        for (int i = 1; i <= n; i++) {
            q.offer(i);
        }
    }

    public int reserve() {
        return q.poll();
    }

    public void unreserve(int seatNumber) {
        q.offer(seatNumber);
    }

}

性能