2576.求出最多标记下标

目标

给你一个下标从 0 开始的整数数组 nums 。

一开始,所有下标都没有被标记。你可以执行以下操作任意次:

  • 选择两个 互不相同且未标记 的下标 i 和 j ,满足 2 * nums[i] <= nums[j] ,标记下标 i 和 j 。

请你执行上述操作任意次,返回 nums 中最多可以标记的下标数目。

示例 1:

输入:nums = [3,5,2,4]
输出:2
解释:第一次操作中,选择 i = 2 和 j = 1 ,操作可以执行的原因是 2 * nums[2] <= nums[1] ,标记下标 2 和 1 。
没有其他更多可执行的操作,所以答案为 2 。

示例 2:

输入:nums = [9,2,5,4]
输出:4
解释:第一次操作中,选择 i = 3 和 j = 0 ,操作可以执行的原因是 2 * nums[3] <= nums[0] ,标记下标 3 和 0 。
第二次操作中,选择 i = 1 和 j = 2 ,操作可以执行的原因是 2 * nums[1] <= nums[2] ,标记下标 1 和 2 。
没有其他更多可执行的操作,所以答案为 4 。

示例 3:

输入:nums = [7,6,8]
输出:0
解释:没有任何可以执行的操作,所以答案为 0 。

说明:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^9

提示:

  • Think about how to check that performing k operations is possible.
  • To perform k operations, it’s optimal to use the smallest k elements and the largest k elements and think about how to match them.
  • It’s optimal to match the ith smallest number with the k-i + 1 largest number.
  • Now we need to binary search on the answer and find the greatest possible valid k.

思路

有一个数组 nums,每一次操作我们可以标记数组中未被标记的两个数,要求其中一个数的两倍小于等于另一个数。问经过任意次操作,最多可以标记多少个数。

题目与下标无关,可以先排序。使用双指针 l r 从前往后找到第一个大于等于其两倍的数 p。然后 l+1 r 继续向后搜索,直到 l 到达 p这时将 l 赋值为 r,并且赋值 r = r + 1,继续前面的算法。 应该使用一个数组记录是否已标记,当 l 第一次到达 p 时,应跳转到之前 r 未被标记的下标。

这种贪心策略也是不对的,对于示例2,排序后的数组为 2 4 5 9。如果优先标记 2 4 后面就不能再标记了,而如果先标记 2 5 我们还可以标记 4 9

那如果我们倒过来考虑呢?从后往前找试试。反过来也不对,例如 10 10 40 100 如果先标记 40 100 前面就不能再标记了。

这样一来我们不知道满足条件后是否应该标记,需要搜索解空间看看哪个最大。回溯搜索相当于搜索n叉树 O(n^n),如果不进行剪枝或者记忆的话肯定超时。如果考虑动态规划,状态又比较多,取决于元素是否被标记。

看了提示,匹配策略一定是k 个小的 small[i] 与后 k 个大的 big[i] 匹配。还是上面的例子 2 4 | 5 9 10 10 | 40 100 最优的匹配方式就是 2 5 4 9 10 40 10 100。现在问题就变成了找出最大的 k。使用二分法查找满足条件的最大 k,然后返回 2k 就是答案。

这道题卡住的点是没想清楚匹配方式。先入为主地以滑动窗口的方式匹配,连续地比较,匹配第一个能够匹配的,这种策略是不对的。

更优的解法是直接用双指针遍历,因为二分查找的判断复杂度为O(k),整体是O(klogn),不如双指针的O(n)。

代码


/**
 * @date 2024-09-12 9:14
 */
public class MaxNumOfMarkedIndices2576 {

    /**
     * 排序的复杂度O(nlogn) 双指针匹配的复杂度O((n + 1) / 2)
     */
    public int maxNumOfMarkedIndices_v1(int[] nums) {
        int n = nums.length;
        Arrays.sort(nums);
        int rs = (n + 1) / 2;
        int l = 0;
        for (int r = rs; r < n; r++) {
            if (nums[l] * 2 <= nums[r]) {
                l++;
            }
        }
        return 2 * l;
    }

    /**
     * 排序的复杂度O(nlogn) 二分查找复杂度O(klogn) 其中判断的复杂度O(k) k最坏的情况下取n/2
     */
    public int maxNumOfMarkedIndices(int[] nums) {
        int n = nums.length;
        Arrays.sort(nums);
        int l = 0, r = n / 2, k = l + (r - l) / 2;
        while (l <= r) {
            if (check(nums, k)) {
                l = k + 1;
            } else {
                r = k - 1;
            }
            k = l + (r - l) / 2;
        }
        return 2 * r;
    }

    public boolean check(int[] nums, int k) {
        int n = nums.length;
        for (int i = 0; i < k; i++) {
            if (nums[i] * 2 > nums[n - k + i]) {
                return false;
            }
        }
        return true;
    }

}

性能

二分查找

双指针

3086.拾起K个1需要的最少行动次数

目标

给你一个下标从 0 开始的二进制数组 nums,其长度为 n ;另给你一个 正整数 k 以及一个 非负整数 maxChanges 。

Alice 在玩一个游戏,游戏的目标是让 Alice 使用 最少 数量的 行动 次数从 nums 中拾起 k 个 1 。游戏开始时,Alice 可以选择数组 [0, n - 1] 范围内的任何索引 aliceIndex 站立。如果 nums[aliceIndex] == 1 ,Alice 会拾起一个 1 ,并且 nums[aliceIndex] 变成0(这 不算 作一次行动)。之后,Alice 可以执行 任意数量 的 行动(包括零次),在每次行动中 Alice 必须 恰好 执行以下动作之一:

  • 选择任意一个下标 j != aliceIndex 且满足 nums[j] == 0 ,然后将 nums[j] 设置为 1 。这个动作最多可以执行 maxChanges 次。
  • 选择任意两个相邻的下标 x 和 y(|x - y| == 1)且满足 nums[x] == 1, nums[y] == 0 ,然后交换它们的值(将 nums[y] = 1 和 nums[x] = 0)。如果 y == aliceIndex,在这次行动后 Alice 拾起一个 1 ,并且 nums[y] 变成 0 。

返回 Alice 拾起 恰好 k 个 1 所需的 最少 行动次数。

示例 1:

输入:nums = [1,1,0,0,0,1,1,0,0,1], k = 3, maxChanges = 1
输出:3
解释:如果游戏开始时 Alice 在 aliceIndex == 1 的位置上,按照以下步骤执行每个动作,他可以利用 3 次行动拾取 3 个 1 :

游戏开始时 Alice 拾取了一个 1 ,nums[1] 变成了 0。此时 nums 变为 [1,0,0,0,0,1,1,0,0,1] 。
选择 j == 2 并执行第一种类型的动作。nums 变为 [1,0,1,0,0,1,1,0,0,1]
选择 x == 2 和 y == 1 ,并执行第二种类型的动作。nums 变为 [1,1,0,0,0,1,1,0,0,1] 。由于 y == aliceIndex,Alice 拾取了一个 1 ,nums 变为  [1,0,0,0,0,1,1,0,0,1] 。
选择 x == 0 和 y == 1 ,并执行第二种类型的动作。nums 变为 [0,1,0,0,0,1,1,0,0,1] 。由于 y == aliceIndex,Alice 拾取了一个 1 ,nums 变为  [0,0,0,0,0,1,1,0,0,1] 。
请注意,Alice 也可能执行其他的 3 次行动序列达成拾取 3 个 1 。

示例 2:

输入:nums = [0,0,0,0], k = 2, maxChanges = 3
输出:4
解释:如果游戏开始时 Alice 在 aliceIndex == 0 的位置上,按照以下步骤执行每个动作,他可以利用 4 次行动拾取 2 个 1 :

选择 j == 1 并执行第一种类型的动作。nums 变为 [0,1,0,0] 。
选择 x == 1 和 y == 0 ,并执行第二种类型的动作。nums 变为 [1,0,0,0] 。由于 y == aliceIndex,Alice 拾起了一个 1 ,nums 变为 [0,0,0,0] 。
再次选择 j == 1 并执行第一种类型的动作。nums 变为 [0,1,0,0] 。
再次选择 x == 1 和 y == 0 ,并执行第二种类型的动作。nums 变为 [1,0,0,0] 。由于y == aliceIndex,Alice 拾起了一个 1 ,nums 变为 [0,0,0,0] 。

说明:

  • 2 <= n <= 10^5
  • 0 <= nums[i] <= 1
  • 1 <= k <= 10^5
  • 0 <= maxChanges <= 10^5
  • maxChanges + sum(nums) >= k

思路

有一个二进制(元素不是0就是1)数组nums,选择一个固定的位置aliceIndex,如果该位置元素值为1,则可以拾起并将元素置0。接下来可以采取行动:

  1. 任选一个不等于aliceIndex且值为0的元素置1
  2. 将任意相邻且元素值不等的元素交换,如果其中一个位置是aliceIndex,且交换后的值为1,则可以拾起这个1并将元素置0

问恰好拾起k个1所需最小行动次数。

很明显行动1要选与aliceIndex相邻的,这样才可以用行动2将1拾起。

我们首先面对的问题是aliceIndex怎么选,要拾取1就需要将1都通过行动2移动到aliceIndex周围,如果拾取一个1的行动次数大于2的话就需要考虑使用行动1直接在aliceIndex周围设置1再拾取。

// todo

代码

性能

2903.找出满足差值条件的下标I

目标

给你一个下标从 0 开始、长度为 n 的整数数组 nums ,以及整数 indexDifference 和整数 valueDifference 。

你的任务是从范围 [0, n - 1] 内找出 2 个满足下述所有条件的下标 i 和 j :

  • abs(i - j) >= indexDifference 且
  • abs(nums[i] - nums[j]) >= valueDifference

返回整数数组 answer。如果存在满足题目要求的两个下标,则 answer = [i, j] ;否则,answer = [-1, -1] 。如果存在多组可供选择的下标对,只需要返回其中任意一组即可。

注意:i 和 j 可能 相等 。

示例 1:

输入:nums = [5,1,4,1], indexDifference = 2, valueDifference = 4
输出:[0,3]
解释:在示例中,可以选择 i = 0 和 j = 3 。
abs(0 - 3) >= 2 且 abs(nums[0] - nums[3]) >= 4 。
因此,[0,3] 是一个符合题目要求的答案。
[3,0] 也是符合题目要求的答案。

示例 2:

输入:nums = [2,1], indexDifference = 0, valueDifference = 0
输出:[0,0]
解释:
在示例中,可以选择 i = 0 和 j = 0 。 
abs(0 - 0) >= 0 且 abs(nums[0] - nums[0]) >= 0 。 
因此,[0,0] 是一个符合题目要求的答案。 
[0,1]、[1,0] 和 [1,1] 也是符合题目要求的答案。 

示例 3:

输入:nums = [1,2,3], indexDifference = 2, valueDifference = 4
输出:[-1,-1]
解释:在示例中,可以证明无法找出 2 个满足所有条件的下标。
因此,返回 [-1,-1] 。

说明:

  • 1 <= n == nums.length <= 100
  • 0 <= nums[i] <= 50
  • 0 <= indexDifference <= 100
  • 0 <= valueDifference <= 50

思路

给我们一个数组,找出其中下标之差大于等于indexDifference,并且值值差大于等于valueDifference的下标,如果不存在返回[-1, -1]。

按照题意我们循环 [0, length),将 [i + indexDifference, length) 的元素分别与 i 进行比较。

题目给定的数据范围比较小,可以使用暴力解法。数据范围变大后这个方法可能会超时,参考 2905.找出满足差值条件的下标 II。

题解给出了一次遍历的题解,只需记录前面的最大与最小值。// todo

代码

/**
 * @date 2024-05-25 20:14
 */
public class FindIndices2903 {
    public int[] findIndices(int[] nums, int indexDifference, int valueDifference) {
        int n = nums.length;
        for (int i = 0; i < n; i++) {
            int r = i + indexDifference;
            while (r < n && Math.abs(nums[i] - nums[r]) < valueDifference) {
                r++;
            }
            if (r < n) {
                return new int[]{i, r};
            }
        }
        return new int[]{-1, -1};
    }
}

性能

826.安排工作以达到最大收益

目标

你有 n 个工作和 m 个工人。给定三个数组: difficulty, profit 和 worker ,其中:

  • difficulty[i] 表示第 i 个工作的难度,profit[i] 表示第 i 个工作的收益。
  • worker[i] 是第 i 个工人的能力,即该工人只能完成难度小于等于 worker[i] 的工作。

每个工人 最多 只能安排 一个 工作,但是一个工作可以 完成多次 。

  • 举个例子,如果 3 个工人都尝试完成一份报酬为 $1 的同样工作,那么总收益为 $3 。如果一个工人不能完成任何工作,他的收益为 $0 。

返回 在把工人分配到工作岗位后,我们所能获得的最大利润 。

示例 1:

输入: difficulty = [2,4,6,8,10], profit = [10,20,30,40,50], worker = [4,5,6,7]
输出: 100 
解释: 工人被分配的工作难度是 [4,4,6,6] ,分别获得 [20,20,30,30] 的收益。

示例 2:

输入: difficulty = [85,47,57], profit = [24,66,99], worker = [40,25,25]
输出: 0

说明:

  • n == difficulty.length
  • n == profit.length
  • m == worker.length
  • 1 <= n, m <= 10^4
  • 1 <= difficulty[i], profit[i], worker[i] <= 10^5

思路

现在有一组任务,其难度与收益分别使用两个数组 difficultyprofit 表示,还有一个数组表示一组工人的能力。现在需要给工人分配工作,如果分配的工作难度大于工人的能力则无法获取收益,求把工人分配到岗后能够获得的最大收益。

我们只需为每个工人分配其能力范围内的收益最高的工作即可。需要注意的是,题目中没有说难度越高收益越高,并且相同难度的收益也会不同

难度与收益是通过下标关联的,并且是无序的。

一个很自然的想法是维护一个难度与最大收益的映射,然后直接根据工人的能力二分查找相应的收益并累加。

那么如何同时对两个相关联的数组进行排序就是解题的关键。这里直接将 difficultyprofit 的映射通过 hashmap 保存起来,然后对 difficulty 从小到大排序。遍历排序后的 difficulty 数组,计算小于该难度的最大收益并更新到profit 中。根据工人的能力二分查找 profit 并累加即可。

容易出错的点是忘记处理相同难度收益不同的情况,二分查找结果为-1时表示无法完成任务任务,不应取难度最低的任务。

官网题解使用的是 javafx.util.Pair/awt包的Point/ 二维数组来保存映射关系。后面收益最高工作的计算,先对 worker 从小到大排序,使用双指针一个指向worker,一个指向难度,后面工人只需从前一个工人的难度开找即可,没用二分查找。

代码

/**
 * @date 2024-05-17 9:20
 */
public class MaxProfitAssignment826 {

    public int maxProfitAssignment(int[] difficulty, int[] profit, int[] worker) {
        int res = 0;
        int n = difficulty.length;
        int m = worker.length;
        Map<Integer, Integer> profitMap = new HashMap<>();
        for (int i = 0; i < n; i++) {
            // 存在难度相同的,取最大的
            if (profitMap.get(difficulty[i]) == null) {
                profitMap.put(difficulty[i], profit[i]);
            } else {
                profitMap.put(difficulty[i], Math.max(profitMap.get(difficulty[i]), profit[i]));
            }
        }
        Arrays.sort(difficulty);
        // 难度从小到大排,更新对应难度可以获得的最大收益
        profit[0] = profitMap.get(difficulty[0]);
        for (int i = 1; i < n; i++) {
            profit[i] = Math.max(profit[i - 1], profitMap.get(difficulty[i]));
        }
        for (int i = 0; i < m; i++) {
            int index = Arrays.binarySearch(difficulty, worker[i]);
            if (index >= 0) {
                res += profit[index];
            } else {
                index = -index - 2;
                if (index >= 0) {
                    // 说明没有能力完成
                    res += profit[index];
                }
            }
        }
        return res;
    }

    // 参考官网题解的答案
    public static class Point{
        public int x;
        public int y;

        public Point(int x, int y) {
            this.x = x;
            this.y = y;
        }
    }

    public int maxProfitAssignment_v1(int[] difficulty, int[] profit, int[] worker) {
        int res = 0;
        int n = difficulty.length;
        Point[] jobs = new Point[n];
        for (int i = 0; i < n; i++) {
            jobs[i] = new Point(difficulty[i], profit[i]);
        }
        Arrays.sort(jobs, (a, b) -> a.x - b.x);
        // 根据工人技能排序
        // 越往后能力越高,可以直接接着上一次难度位置向后遍历
        Arrays.sort(worker);
        int index = 0;
        int best = 0;
        for (int capability : worker) {
            while (index < n && capability >= jobs[index].x) {
                best = Math.max(best, jobs[index++].y);
            }
            res += best;
        }
        return res;
    }
}

性能

最后计算最大收益时在循环中使用二分查找,时间复杂度为O(mlogn),而使用双指针 difficulty 最多遍历一遍,时间复杂度是O(m + n)应该更快一点。另外使用hashMap效率不高,因为需要计算hashcode,不如直接访问。

改进后

1702.修改后的最大二进制字符串

目标

给你一个二进制字符串 binary ,它仅有 0 或者 1 组成。你可以使用下面的操作任意次对它进行修改:

  • 操作 1 :如果二进制串包含子字符串 "00" ,你可以用 "10" 将其替换。

    比方说, "00010" -> "10010"

  • 操作 2 :如果二进制串包含子字符串 "10" ,你可以用 "01" 将其替换。

    比方说, "00010" -> "00001"

请你返回执行上述操作任意次以后能得到的 最大二进制字符串 。如果二进制字符串 x 对应的十进制数字大于二进制字符串 y 对应的十进制数字,那么我们称二进制字符串 x 大于二进制字符串 y 。

示例 1:

输入:binary = "000110"
输出:"111011"
解释:一个可行的转换为:
"000110" -> "000101" 
"000101" -> "100101" 
"100101" -> "110101" 
"110101" -> "110011" 
"110011" -> "111011"

示例 2:

输入:binary = "01"
输出:"01"
解释:"01" 没办法进行任何转换。

说明:

  • 1 <= binary.length <= 10^5
  • binary 仅包含 '0' 和 '1'

思路

看到这道题我最先想到的是使用字符串替换,先把00的都替换为10,直到不能替换为止。然后再替换10为01,直到不能替换为止。然后再从头替换,相当于是一个while里面套两个while。

通过对具体例子的观察可以发现将10替换为01不是无条件的,我甚至还写了比较字符串大小的方法,如果字符串变小了就不变了。但其实是不行的,因为中间过程确实存在变小的情况。

最后经过观察分析发现必须要前面有0才可以替换,因为这样可以将高位的0置为1。以01110为例,最后能够转换为10111。

于是就想通过replace方法替换捕获组来实现,例如匹配 0(1*)0,替换为 10(匹配到的1),试了一下发现replacement不支持。Pattern 类也是无法使用的。

基于上面的分析,我们可以通过算法模拟出替换过程,这里面需要用到双指针 starti

  1. 如果 starti 相同且都指向1,那么直接跳过
  2. 如果 starti 相差1,且 i 指向0,即00的情况,那么将 start 指向置1,start++
  3. 否则,如果 starti 相差大于1,且 i 指向0,即0(1+)0的情况,那么需要将start 指向置1,start 后面的置0,i 指向的置1 即可

需要注意的是,如果 starti 不同,那么 start 指向的一定是0。其实步骤2与3可以合并,只需先将 i 置1,然后再将 start 后面的置0即可。

看了官网的题解,还提供了一种直接构建的算法。

如果字符串中有多个0,总可以将它们通过10->01将其前移至第一个0的位置,然后通过00->10,使高位的0变为1。最终的结果中至多包含1个0。

因此,直接构建的方法是:从第一个0开始,后面的0全置为1,然后将第一个0后移 0的个数减1 个位置。

代码

/**
 * @date 2024-04-10 0:53
 */
public class MaximumBinaryString1702 {

    /** 直接构造 */
    public String maximumBinaryString_v2(String binary) {
        char[] b = binary.toCharArray();
        int firstZero = binary.indexOf('0');
        if (firstZero == -1) {
            return binary;
        }
        int cnt = 0;
        for (int i = firstZero; i < b.length; i++) {
            cnt += '1' - b[i];
            b[i] = '1';
        }
        b[firstZero + cnt - 1] = '0';
        return new String(b);
    }

    public String maximumBinaryString_v1(String binary) {
        char[] b = binary.toCharArray();
        int start = 0;
        for (int i = 0; i < b.length; i++) {
            if (start == i && '1' == b[i]) {
                start++;
            } else if (start <= i - 1 && '0' == b[i]) {
                b[start++] = '1';
                b[i] = '1';
                b[start] = '0';
            }
        }
        return new String(b);
    }

    public String maximumBinaryString(String binary) {
        char[] b = binary.toCharArray();
        int start = 0;
        for (int i = 0; i < b.length; i++) {
            if (start == i && '1' == b[i]) {
                start++;
            } else if (start == i - 1 && '0' == b[i]) {
                b[start++] = '1';
            } else if (start < i - 1 && '0' == b[i]) {
                b[start++] = '1';
                b[start] = '0';
                b[i] = '1';
            }
        }
        return new String(b);
    }

}

性能

1793.好子数组的最大分数

目标

给你一个整数数组 nums (下标从 0 开始)和一个整数 k 。

一个子数组 (i, j) 的 分数 定义为 min(nums[i], nums[i+1], ..., nums[j]) * (j - i + 1) 。一个 好 子数组的两个端点下标需要满足 i <= k <= j 。

请你返回 好 子数组的最大可能 分数 。

示例 1:

输入:nums = [1,4,3,7,4,5], k = 3
输出:15
解释:最优子数组的左右端点下标是 (1, 5) ,分数为 min(4,3,7,4,5) * (5-1+1) = 3 * 5 = 15 。

示例 2:

输入:nums = [5,5,4,5,4,1,1,1], k = 0
输出:20
解释:最优子数组的左右端点下标是 (0, 4) ,分数为 min(5,5,4,5,4) * (4-0+1) = 4 * 5 = 20 。

提示:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 2 * 10^4
  • 0 <= k < nums.length

思路

题目中定义的好子数组必须要包含下标k,且其元素最小值乘以它的长度应最大。相同长度的子数组其最小值通常不同,应取最小值中最大的,这样才能在窗口固定的情况下求得最大分数。

刚开始我把这个问题作为一个动态规划问题来求解:有一个窗口,在下标k的位置有一个固定轴,窗口可以左右滑动,拉伸,但窗口边缘不能越过k。然后求解窗口大小固定时,滑动窗口内最小元素取最大时的状态。接着扩展窗口,新窗口的取值依赖于上一窗口,只需在上一窗口的基础上左右各扩展一个元素进行比较即可。

但是我马上就遇到了问题,因为k的位置是不确定的,窗口左右滑动总会有一边先到达边界,然后怎么处理?上一个窗口取得较大的最小值可能是在k左侧,当窗口到达左侧边界后就无法再移动了,这样势必会有一部分覆盖到k右侧,我们无法再用一侧的最优解来掩盖另一侧了。而右边新加入窗口的元素与上一个状态选择的最小值无法确定新的最小值。因为窗口记录的是左右两侧的最优解,单独某一侧的状态并没有被记录。比如 nums=[10,9,8,7,6,5,3,2,2,4,9,4,11,3,4],k=5,当窗口大小为6时,左侧的最小值是5,右侧最小值是2(但是我们并没有记录),我们记录的是较大的5。当窗口大小为7时,左侧窗口最小值为3(必须跨过k了),右侧新加入窗口的值是4,如果与上一个状态比较,我们可能会选择4,但是右侧最小值是2,我们应该选3。

于是我想可能需要分别记录左右两侧的状态。我们为什么要记录状态?上面记录状态是为了与新进入窗口的元素比较来选择最优解,我们现在记录左右两侧的什么呢?

随着思考的深入,我觉得应该放弃所谓滑动窗口这个概念了,不应该在左右两侧同时求解。

思考这个问题,窗口增大之后,其中元素的最小值会怎么变?反正最小值一定不会变大。于是只要新加入的元素比窗口内已经选定的最小值大就可以一直扩张,因为最小值没有变化,窗口大小越大分数就越大。当遇到比当前窗口内最小值小的元素时就需要比较窗口另一侧的值,哪边的更大就从哪边扩张。如此反复即可。

代码

/**
 * @date 2024-03-19 0:16
 */
public class MaximumScore {

    public int maximumScore_v2(int[] nums, int k) {
        if (nums.length == 1) {
            return nums[0];
        }
        int res = 0;
        int l = k - 1, r = k + 1;
        int lmin = nums[k], rmin = nums[k];
        while (l >= 0 || r < nums.length) {
            if (l >= 0) {
                lmin = Math.min(lmin, nums[l]);
            }
            if (r < nums.length) {
                rmin = Math.min(rmin, nums[r]);
            }
            if ((lmin >= rmin && l >= 0) || r >= nums.length) {
                l--;
                while (l >= 0 && lmin <= nums[l]) {
                    l--;
                }
                // r-l是窗口大小(不包括r),由于l多减了1,所以这里要减去
                res = Math.max(res, lmin * (r - l - 1));
            } else {
                r++;
                while (r < nums.length && rmin <= nums[r]) {
                    r++;
                }
                // r-l是窗口大小(不包括l)由于r多加了1,所以这里要减去
                res = Math.max(res, rmin * (r - l - 1));
            }
        }
        return res;
    }
}

性能