3033.修改矩阵

目标

给你一个下标从 0 开始、大小为 m x n 的整数矩阵 matrix ,新建一个下标从 0 开始、名为 answer 的矩阵。使 answer 与 matrix 相等,接着将其中每个值为 -1 的元素替换为所在列的 最大 元素。

返回矩阵 answer 。

示例 1:

输入:matrix = [[1,2,-1],[4,-1,6],[7,8,9]]
输出:[[1,2,9],[4,8,6],[7,8,9]]
解释:上图显示了发生替换的元素(蓝色区域)。
- 将单元格 [1][1] 中的值替换为列 1 中的最大值 8 。
- 将单元格 [0][2] 中的值替换为列 2 中的最大值 9 。

示例 2:

输入:matrix = [[3,-1],[5,2]]
输出:[[3,2],[5,2]]
解释:上图显示了发生替换的元素(蓝色区域)。

说明:

  • m == matrix.length
  • n == matrix[i].length
  • 2 <= m, n <= 50
  • -1 <= matrix[i][j] <= 100
  • 测试用例中生成的输入满足每列至少包含一个非负整数。

思路

使用矩阵各列的最大值替换该列中值为-1的元素。

先求出各列的最大值,然后替换。

代码

/**
 * @date 2024-07-05 0:26
 */
public class ModifiedMatrix3033 {

    /**
     * 优化到一个循环中,使用局部遍历保存当前列的最大值,
     * 没必要使用数组保存所有列的最大值然后再处理
     */
    public int[][] modifiedMatrix_v1(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        for (int i = 0; i < n; i++) {
            int max = 0;
            for (int j = 0; j < m; j++) {
                max = Math.max(max, matrix[j][i]);
            }
            for (int j = 0; j < m; j++) {
                if (matrix[j][i] == -1) {
                    matrix[j][i] = max;
                }
            }
        }
        return matrix;
    }

    public int[][] modifiedMatrix(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        int[] max = new int[n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                max[i] = Math.max(max[i], matrix[j][i]);
            }
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (matrix[j][i] == -1) {
                    matrix[j][i] = max[i];
                }
            }
        }
        return matrix;
    }
}

性能

3086.拾起K个1需要的最少行动次数

目标

给你一个下标从 0 开始的二进制数组 nums,其长度为 n ;另给你一个 正整数 k 以及一个 非负整数 maxChanges 。

Alice 在玩一个游戏,游戏的目标是让 Alice 使用 最少 数量的 行动 次数从 nums 中拾起 k 个 1 。游戏开始时,Alice 可以选择数组 [0, n - 1] 范围内的任何索引 aliceIndex 站立。如果 nums[aliceIndex] == 1 ,Alice 会拾起一个 1 ,并且 nums[aliceIndex] 变成0(这 不算 作一次行动)。之后,Alice 可以执行 任意数量 的 行动(包括零次),在每次行动中 Alice 必须 恰好 执行以下动作之一:

  • 选择任意一个下标 j != aliceIndex 且满足 nums[j] == 0 ,然后将 nums[j] 设置为 1 。这个动作最多可以执行 maxChanges 次。
  • 选择任意两个相邻的下标 x 和 y(|x - y| == 1)且满足 nums[x] == 1, nums[y] == 0 ,然后交换它们的值(将 nums[y] = 1 和 nums[x] = 0)。如果 y == aliceIndex,在这次行动后 Alice 拾起一个 1 ,并且 nums[y] 变成 0 。

返回 Alice 拾起 恰好 k 个 1 所需的 最少 行动次数。

示例 1:

输入:nums = [1,1,0,0,0,1,1,0,0,1], k = 3, maxChanges = 1
输出:3
解释:如果游戏开始时 Alice 在 aliceIndex == 1 的位置上,按照以下步骤执行每个动作,他可以利用 3 次行动拾取 3 个 1 :

游戏开始时 Alice 拾取了一个 1 ,nums[1] 变成了 0。此时 nums 变为 [1,0,0,0,0,1,1,0,0,1] 。
选择 j == 2 并执行第一种类型的动作。nums 变为 [1,0,1,0,0,1,1,0,0,1]
选择 x == 2 和 y == 1 ,并执行第二种类型的动作。nums 变为 [1,1,0,0,0,1,1,0,0,1] 。由于 y == aliceIndex,Alice 拾取了一个 1 ,nums 变为  [1,0,0,0,0,1,1,0,0,1] 。
选择 x == 0 和 y == 1 ,并执行第二种类型的动作。nums 变为 [0,1,0,0,0,1,1,0,0,1] 。由于 y == aliceIndex,Alice 拾取了一个 1 ,nums 变为  [0,0,0,0,0,1,1,0,0,1] 。
请注意,Alice 也可能执行其他的 3 次行动序列达成拾取 3 个 1 。

示例 2:

输入:nums = [0,0,0,0], k = 2, maxChanges = 3
输出:4
解释:如果游戏开始时 Alice 在 aliceIndex == 0 的位置上,按照以下步骤执行每个动作,他可以利用 4 次行动拾取 2 个 1 :

选择 j == 1 并执行第一种类型的动作。nums 变为 [0,1,0,0] 。
选择 x == 1 和 y == 0 ,并执行第二种类型的动作。nums 变为 [1,0,0,0] 。由于 y == aliceIndex,Alice 拾起了一个 1 ,nums 变为 [0,0,0,0] 。
再次选择 j == 1 并执行第一种类型的动作。nums 变为 [0,1,0,0] 。
再次选择 x == 1 和 y == 0 ,并执行第二种类型的动作。nums 变为 [1,0,0,0] 。由于y == aliceIndex,Alice 拾起了一个 1 ,nums 变为 [0,0,0,0] 。

说明:

  • 2 <= n <= 10^5
  • 0 <= nums[i] <= 1
  • 1 <= k <= 10^5
  • 0 <= maxChanges <= 10^5
  • maxChanges + sum(nums) >= k

思路

有一个二进制(元素不是0就是1)数组nums,选择一个固定的位置aliceIndex,如果该位置元素值为1,则可以拾起并将元素置0。接下来可以采取行动:

  1. 任选一个不等于aliceIndex且值为0的元素置1
  2. 将任意相邻且元素值不等的元素交换,如果其中一个位置是aliceIndex,且交换后的值为1,则可以拾起这个1并将元素置0

问恰好拾起k个1所需最小行动次数。

很明显行动1要选与aliceIndex相邻的,这样才可以用行动2将1拾起。

我们首先面对的问题是aliceIndex怎么选,要拾取1就需要将1都通过行动2移动到aliceIndex周围,如果拾取一个1的行动次数大于2的话就需要考虑使用行动1直接在aliceIndex周围设置1再拾取。

// todo

代码

性能

3099.哈沙德数

目标

如果一个整数能够被其各个数位上的数字之和整除,则称之为 哈沙德数(Harshad number)。给你一个整数 x 。如果 x 是 哈沙德数 ,则返回 x 各个数位上的数字之和,否则,返回 -1 。

示例 1:

输入: x = 18
输出: 9
解释: x 各个数位上的数字之和为 9 。18 能被 9 整除。因此 18 是哈沙德数,答案是 9 。

示例 2:

输入: x = 23
输出: -1
解释: x 各个数位上的数字之和为 5 。23 不能被 5 整除。因此 23 不是哈沙德数,答案是 -1 。

说明:

  • 1 <= x <= 100

思路

判断给定的整数x的各位数字之和能否整除x,如果可以返回各位数字之和,否则返回-1。

代码

/**
 * @date 2024-07-03 0:40
 */
public class SumOfTheDigitsOfHarshadNumber3099 {

    public int sumOfTheDigitsOfHarshadNumber(int x) {
        int sum = 0;
        // 容易出错的点是直接对x进行修改,后面求余的时候就错了
        int digit = x;
        while (digit > 0) {
            sum += digit % 10;
            digit /= 10;
        }
        return x % sum == 0 ? sum : -1;
    }
}

性能

3115.质数的最大距离

目标

给你一个整数数组 nums。

返回两个(不一定不同的)质数在 nums 中 下标 的 最大距离。

示例 1:

输入: nums = [4,2,9,5,3]
输出: 3
解释: nums[1]、nums[3] 和 nums[4] 是质数。因此答案是 |4 - 1| = 3。

示例 2:

输入: nums = [4,8,2,8]
输出: 0
解释: nums[2] 是质数。因为只有一个质数,所以答案是 |2 - 2| = 0。

说明:

  • 1 <= nums.length <= 3 * 10^5
  • 1 <= nums[i] <= 100
  • 输入保证 nums 中至少有一个质数。

思路

找出数组中质数的最远距离(下标之差)。

知识点:

  • 自然数:非负整数
  • 质数:只能被1和它本身整除的大于1的自然数
  • 合数:不是质数的大于1的自然数

如果 n 是一个合数,那么它可以分解为两个自然数 a、b 的乘积,即 n = a * b。设 a ≤ b ,如果 a ≥ √n ,那么 a * b ≥ n。 也就是说 a、b 要么同时等于 √n,要么一个大于一个小于 √n不可能同时大于√n。于是判断一个数是否是质数,只需判断 n 是否能够整除 1 ~ √n

除了2的偶数都不是质数,因此自增的步长可以设为2。

更进一步分析,所有质数除了2和3外,都形如 6k - 16k + 1。考虑 n % 6

  • 余数为0,首先6不是质数,能被6整除的数也不是质数
  • 余数为2、4,表明能够被2整除,不是质数
  • 余数为3,表明能被3整除,不是质数
  • 余数为5,6k - 1
  • 余数为1,6k + 1

从5开始,步长可以设为6。

代码

/**
 * @date 2024-07-02 9:13
 */
public class MaximumPrimeDifference3115 {

    public int maximumPrimeDifference_v2(int[] nums) {
        int i = 0, j = nums.length - 1;
        while (!isPrimeNumber(nums[i])) {
            i++;
        }
        while (!isPrimeNumber(nums[j])) {
            j--;
        }
        return j - i;
    }

    public boolean isPrimeNumber(int num) {
        if (num == 1) {
            return false;
        }
        if (num == 2) {
            return true;
        }
        if (num % 2 == 0) {
            return false;
        }
        for (int i = 3; i * i <= num; i += 2) {
            if (num % i == 0) {
                return false;
            }
        }
        return true;
    }

    public static boolean isPrimeNumber_v1(int num) {
        if (num <= 1) {
            return false;
        }
        if (num <= 3) {
            return true; 
        }
        if (num % 2 == 0 || num % 3 == 0) {
            return false; 
        }
        for (int i = 5; i * i <= num; i += 6) {
            // i = 6k - 1, i + 2 = 6k + 1
            if (num % i == 0 || num % (i + 2) == 0) {
                return false;
            }
        }
        return true;
    }
}

性能

494.目标和

目标

给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

说明:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000

思路

有一个数组,可以在数组元素前加上正负号来组成表达式,问表达式等于target的数目。

如果当前元素为正则累加,否则相减,递归直到所有元素都已列入表达式,如果累加结果等于target则返回1,否则返回0。

//todo 改为递推,或记忆化搜索

代码

/**
 * @date 2024-06-30 20:07
 */
public class FindTargetSumWays494 {
    public int findTargetSumWays(int[] nums, int target) {
        return dfs(nums, 1, nums[0], target) + dfs(nums, 1, -nums[0], target);
    }

    public int dfs(int[] nums, int i, int res, int target) {
        if (i == nums.length) {
            return res - target == 0 ? 1 : 0;
        }
        return dfs(nums, i + 1, res + nums[i], target) + dfs(nums, i + 1, res - nums[i], target);
    }

}

性能

2710.移除字符串中的尾随零

目标

给你一个用字符串表示的正整数 num ,请你以字符串形式返回不含尾随零的整数 num 。

示例 1:

输入:num = "51230100"
输出:"512301"
解释:整数 "51230100" 有 2 个尾随零,移除并返回整数 "512301" 。

示例 2:

输入:num = "123"
输出:"123"
解释:整数 "123" 不含尾随零,返回整数 "123" 。

说明:

  • 1 <= num.length <= 1000
  • num 仅由数字 0 到 9 组成
  • num 不含前导零

思路

去掉字符串末尾的0。

代码

/**
 * @date 2024-06-29 21:45
 */
public class RemoveTrailingZeros2710 {

    public String removeTrailingZeros(String num) {
        int n = num.length() - 1;
        while (n >= 0 && num.charAt(n) == '0') {
            n--;
        }
        return num.substring(0, n + 1);
    }
}

性能

2734.执行子串操作后的字典序最小字符串

目标

给你一个仅由小写英文字母组成的字符串 s 。在一步操作中,你可以完成以下行为:

  • 选择 s 的任一非空子字符串,可能是整个字符串,接着将字符串中的每一个字符替换为英文字母表中的前一个字符。例如,'b' 用 'a' 替换,'a' 用 'z' 替换。

返回执行上述操作 恰好一次 后可以获得的 字典序最小 的字符串。

子字符串 是字符串中的一个连续字符序列。

现有长度相同的两个字符串 x 和 字符串 y ,在满足 x[i] != y[i] 的第一个位置 i 上,如果 x[i] 在字母表中先于 y[i] 出现,则认为字符串 x 比字符串 y 字典序更小 。

示例 1:

输入:s = "cbabc"
输出:"baabc"
解释:我们选择从下标 0 开始、到下标 1 结束的子字符串执行操作。 
可以证明最终得到的字符串是字典序最小的。

示例 2:

输入:s = "acbbc"
输出:"abaab"
解释:我们选择从下标 1 开始、到下标 4 结束的子字符串执行操作。
可以证明最终得到的字符串是字典序最小的。

示例 3:

输入:s = "leetcode"
输出:"kddsbncd"
解释:我们选择整个字符串执行操作。
可以证明最终得到的字符串是字典序最小的。

说明:

  • 1 <= s.length <= 3 * 10^5
  • s 仅由小写英文字母组成

思路

求对一个字符串的 非空子串 进行操作后字典序最小的字符串,两个字符串 第一个不同的字母 在字母表 越先出现 其字典序就越小。字符串仅由小写字母组成,可进行的操作指将子串的每一个字母替换为其在字母表中的前一个字母,a 前面的字母定义为 z

关键在于非空子串如何选,根据题意可知,如果子串不含字母 a 操作总能使字典序变小。字符串前面字符的字典序越小整个字符串的字典序就越小,因此可以从前向后遍历直到遇到字母 a 作为子串。如果字符串字母均为 a,操作总会使字典序变大,显然将最后一个 a 改为 z 可以使操作后的字符串字典序最小。

代码

/**
 * @date 2024-06-27 0:05
 */
public class SmallestString2734 {

    public String smallestString_v1(String s) {
        int i = 0;
        int n = s.length();
        char[] chars = s.toCharArray();
        while (i < n && chars[i] == 'a') {
            i++;
        }
        while (i < n && chars[i] != 'a') {
            chars[i++]--;
        }
        if (i == n && s.charAt(n - 1) == 'a') {
            chars[n - 1] = 'z';
        }
        return new String(chars);
    }

    public String smallestString_v2(String s) {
        int i = 0;
        int n = s.length();
        StringBuilder sb = new StringBuilder(s);
        while (i < n && s.charAt(i) == 'a') {
            i++;
        }
        if (i == n) {
            sb.setCharAt(n - 1, 'z');
            return sb.toString();
        }
        while (i < n && s.charAt(i) != 'a') {
            sb.setCharAt(i, (char) (s.charAt(i++) - 1));
        }
        return sb.toString();
    }
}

性能

使用 StringBuilder 显示用时更少,我试了一下与if判断的位置没关系,按道理来说直接数组访问比方法调用开销更小,new StringBuilder(s)s.toCharArray 都进行了数组拷贝。我能想到的解释就是大家都用的StringBuilder,然后这段代码被JIT编译器优化。

2741.特别的排列

目标

给你一个下标从 0 开始的整数数组 nums ,它包含 n 个 互不相同 的正整数。如果 nums 的一个排列满足以下条件,我们称它是一个特别的排列:

  • 对于 0 <= i < n - 1 的下标 i ,要么 nums[i] % nums[i+1] == 0 ,要么 nums[i+1] % nums[i] == 0 。

请你返回特别排列的总数目,由于答案可能很大,请将它对 109 + 7 取余 后返回。

示例 1:

输入:nums = [2,3,6]
输出:2
解释:[3,6,2] 和 [2,6,3] 是 nums 两个特别的排列。

示例 2:

输入:nums = [1,4,3]
输出:2
解释:[3,1,4] 和 [4,1,3] 是 nums 两个特别的排列。

说明:

  • 2 <= nums.length <= 14
  • 1 <= nums[i] <= 10^9

思路

有一个互不相同的正整数数组,问使得相邻元素可以被整除(对于相邻元素a % b == 0 || b % a == 0)的排列有多少种。

排列数的计算需要使用dfs,但如果不保存重复子问题的话会超时。

难点在于是否将保存的结果计入,例如 [2,6,3],虽然dfs 2 -> 6 -> 36 -> 2 -> 3有重复的子问题3,但是后者不符合题目条件。

// todo

代码

性能