3291.形成目标字符串需要的最少字符串数I

目标

给你一个字符串数组 words 和一个字符串 target。

如果字符串 x 是 words 中 任意 字符串的 前缀,则认为 x 是一个 有效 字符串。

现计划通过 连接 有效字符串形成 target ,请你计算并返回需要连接的 最少 字符串数量。如果无法通过这种方式形成 target,则返回 -1。

示例 1:

输入: words = ["abc","aaaaa","bcdef"], target = "aabcdabc"
输出: 3
解释:
target 字符串可以通过连接以下有效字符串形成:
words[1] 的长度为 2 的前缀,即 "aa"。
words[2] 的长度为 3 的前缀,即 "bcd"。
words[0] 的长度为 3 的前缀,即 "abc"。

示例 2:

输入: words = ["abababab","ab"], target = "ababaababa"
输出: 2
解释:
target 字符串可以通过连接以下有效字符串形成:
words[0] 的长度为 5 的前缀,即 "ababa"。
words[0] 的长度为 5 的前缀,即 "ababa"。

示例 3:

输入: words = ["abcdef"], target = "xyz"
输出: -1

说明:

  • 1 <= words.length <= 100
  • 1 <= words[i].length <= 5 * 10^3
  • 输入确保 sum(words[i].length) <= 10^5。
  • words[i] 只包含小写英文字母。
  • 1 <= target.length <= 5 * 10^3
  • target 只包含小写英文字母。

思路

有一个字符串数组 words 和目标字符串 target,请你使用最少的字符串前缀组成 target,返回需要的字符串数量,如果无法组成 target 返回 -1

注意前缀是允许重复使用的,状态个数为 target.length ^ 2,深度为 100,直接使用记忆化搜索会超时。

使用字典树加动态规划可以勉强通过,但是明天的通过不了。

//todo KMP 算法 Z 函数 / 字符串哈希+二分 / AC 自动机

代码


/**
 * @date 2024-12-17 8:59
 */
public class MinValidStrings3291 {

    static public class Trie {
        public boolean isLeaf;
        public Trie[] children;

        public Trie() {
            this.children = new Trie[26];
        }

        public Trie build(String[] dict) {
            Trie root = this;
            for (String word : dict) {
                root = this;
                char[] chars = word.toCharArray();
                for (int i = 0; i < chars.length; i++) {
                    int c = chars[i] - 'a';
                    if (root.children[c] == null) {
                        root.children[c] = new Trie();
                    }
                    root = root.children[c];
                }
                root.isLeaf = true;
            }
            return root;
        }

        public int exists(char[] target, int start) {
            int n = target.length;
            int length = 0;
            Trie root = this;
            int c = target[start] - 'a';
            while (root.children[c] != null) {
                root = root.children[c];
                length++;
                start++;
                if (start == n) {
                    break;
                }
                c = target[start] - 'a';
            }
            return length;
        }

    }

    public int minValidStrings_v1(String[] words, String target) {
        Trie root = new Trie();
        root.build(words);
        char[] chars = target.toCharArray();
        int n = chars.length;
        int[] dp = new int[n];
        Arrays.fill(dp, Integer.MAX_VALUE);
        int length = root.exists(chars, 0);
        for (int i = 0; i < length; i++) {
            dp[i] = 1;
        }

        for (int i = 1; i < n; i++) {
            if (dp[i - 1] == Integer.MAX_VALUE) {
                return -1;
            }
            length = root.exists(chars, i);
            for (int j = i; j < i + length; j++) {
                dp[j] = Math.min(dp[j], dp[i - 1] + 1);
            }
        }

        return dp[n - 1] == Integer.MAX_VALUE ? -1 : dp[n - 1];
    }

}

性能

1847.最近的房间

目标

一个酒店里有 n 个房间,这些房间用二维整数数组 rooms 表示,其中 rooms[i] = [roomIdi, sizei] 表示有一个房间号为 roomIdi 的房间且它的面积为 sizei 。每一个房间号 roomIdi 保证是 独一无二 的。

同时给你 k 个查询,用二维数组 queries 表示,其中 queries[j] = [preferredj, minSizej] 。第 j 个查询的答案是满足如下条件的房间 id :

  • 房间的面积 至少 为 minSizej ,且
  • abs(id - preferredj) 的值 最小 ,其中 abs(x) 是 x 的绝对值。

如果差的绝对值有 相等 的,选择 最小 的 id 。如果 没有满足条件的房间 ,答案为 -1 。

请你返回长度为 k 的数组 answer ,其中 answer[j] 为第 j 个查询的结果。

示例 1:

输入:rooms = [[2,2],[1,2],[3,2]], queries = [[3,1],[3,3],[5,2]]
输出:[3,-1,3]
解释:查询的答案如下:
查询 [3,1] :房间 3 的面积为 2 ,大于等于 1 ,且号码是最接近 3 的,为 abs(3 - 3) = 0 ,所以答案为 3 。
查询 [3,3] :没有房间的面积至少为 3 ,所以答案为 -1 。
查询 [5,2] :房间 3 的面积为 2 ,大于等于 2 ,且号码是最接近 5 的,为 abs(3 - 5) = 2 ,所以答案为 3 。

示例 2:

输入:rooms = [[1,4],[2,3],[3,5],[4,1],[5,2]], queries = [[2,3],[2,4],[2,5]]
输出:[2,1,3]
解释:查询的答案如下:
查询 [2,3] :房间 2 的面积为 3 ,大于等于 3 ,且号码是最接近的,为 abs(2 - 2) = 0 ,所以答案为 2 。
查询 [2,4] :房间 1 和 3 的面积都至少为 4 ,答案为 1 因为它房间编号更小。
查询 [2,5] :房间 3 是唯一面积大于等于 5 的,所以答案为 3 。

说明:

  • n == rooms.length
  • 1 <= n <= 10^5
  • k == queries.length
  • 1 <= k <= 10^4
  • 1 <= roomIdi, preferredj <= 10^7
  • 1 <= sizei, minSizej <= 10^7

思路

有一个数组 roomsrooms[i][0] 表示第 i 个房间编号,房间编号不重复,rooms[i][1] 表示第 i 个房间大小。有一个查询数组 queriesqueries[j][0] 表示第 j 个查询期望的房间编号queries[j][1] 表示第 j 个查询最小的房间大小。返回查询数组对应的结果数组,查询结果为房间编号,该房间的面积至少为 queries[j][1],且房间编号与 queries[j][0] 的距离最小,如果存在距离相等的情况,取房间编号最小的。

首先按房间大小排序,大小相同的按编号排序。对于每个查询首先二分查找出第一个大于 queries[j][1] 的房间在数组中的位置,接下来需要从该位置往后计算距离 queries[j][0] 最近的房间编号。

// todo 官网题解 Bentley Ottmann, Sparse Table 倍增 RMQ,Range Maximum/Minimum Query

代码


/**
 * @date 2024-12-16 16:23
 */
public class ClosestRoom1847 {

    public int[] closestRoom(int[][] rooms, int[][] queries) {
        Arrays.sort(rooms, (a, b) -> {
            int compare = a[1] - b[1];
            if (compare != 0) {
                return compare;
            }
            return a[0] - b[0];
        });
        int n = rooms.length;
        int k = queries.length;
        int[] res = new int[k];
        int i = 0;
        for (int[] query : queries) {
            int minAreaRoomIndex = lowerBound(rooms, 0, n - 1, query[1]);
            if (minAreaRoomIndex == n) {
                res[i++] = -1;
                continue;
            }
            int dist = Integer.MAX_VALUE;
            int roomId = Integer.MAX_VALUE;
            for (int j = minAreaRoomIndex; j < n; j++) {
                int tmp = Math.abs(query[0] - rooms[j][0]);
                if (tmp < dist) {
                    dist = tmp;
                    roomId = rooms[j][0];
                } else if (tmp == dist) {
                    roomId = Math.min(rooms[j][0], roomId);
                }
            }
            res[i++] = roomId;
        }

        return res;
    }

    public int lowerBound(int[][] rooms, int l, int r, int target) {
        int m = l + ((r - l) >> 1);
        while (l <= r) {
            if (rooms[m][1] >= target) {
                r = m - 1;
            } else {
                l = m + 1;
            }
            m = l + ((r - l) >> 1);
        }
        return l;
    }

}

性能

1338.数组大小减半

目标

给你一个整数数组 arr。你可以从中选出一个整数集合,并删除这些整数在数组中的每次出现。

返回 至少 能删除数组中的一半整数的整数集合的最小大小。

示例 1:

输入:arr = [3,3,3,3,5,5,5,2,2,7]
输出:2
解释:选择 {3,7} 使得结果数组为 [5,5,5,2,2]、长度为 5(原数组长度的一半)。
大小为 2 的可行集合有 {3,5},{3,2},{5,2}。
选择 {2,7} 是不可行的,它的结果数组为 [3,3,3,3,5,5,5],新数组长度大于原数组的二分之一。

示例 2:

输入:arr = [7,7,7,7,7,7]
输出:1
解释:我们只能选择集合 {7},结果数组为空。

说明:

  • 1 <= arr.length <= 10^5
  • arr.length 为偶数
  • 1 <= arr[i] <= 10^5

思路

从整数数组中选出一个元素集合,使该集合中元素在原数组中的出现次数超过原数组长度的一半,求集合大小的最小值。

统计每个元素的出现次数,将出现次数从大到小排序,然后开始选元素直到满足题目条件。

代码


/**
 * @date 2024-12-15 0:17
 */
public class MinSetSize1338 {

    public int minSetSize(int[] arr) {
        int n = arr.length;
        int[] cnt = new int[100001];
        for (int i : arr) {
            cnt[i]++;
        }
        PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> b - a);
        for (int i : cnt) {
            if (i > 0) {
                q.offer(i);
            }
        }
        int res = 0;
        int l = 0;
        while (!q.isEmpty()) {
            l += q.poll();
            res++;
            if (l >= n / 2) {
                break;
            }
        }
        return res;
    }
}

性能

3266.K次乘运算后的最终数组II

目标

给你一个整数数组 nums ,一个整数 k 和一个整数 multiplier 。

你需要对 nums 执行 k 次操作,每次操作中:

  • 找到 nums 中的 最小 值 x ,如果存在多个最小值,选择最 前面 的一个。
  • 将 x 替换为 x * multiplier 。

k 次操作以后,你需要将 nums 中每一个数值对 10^9 + 7 取余。

请你返回执行完 k 次乘运算以及取余运算之后,最终的 nums 数组。

示例 1:

输入:nums = [2,1,3,5,6], k = 5, multiplier = 2
输出:[8,4,6,5,6]
解释:
操作 结果
1 次操作后 [2, 2, 3, 5, 6]
2 次操作后 [4, 2, 3, 5, 6]
3 次操作后 [4, 4, 3, 5, 6]
4 次操作后 [4, 4, 6, 5, 6]
5 次操作后 [8, 4, 6, 5, 6]
取余操作后 [8, 4, 6, 5, 6]

示例 2:

输入:nums = [100000,2000], k = 2, multiplier = 1000000
输出:[999999307,999999993]
解释:
操作 结果
1 次操作后 [100000, 2000000000]
2 次操作后 [100000000000, 2000000000]
取余操作后 [999999307, 999999993]

说明:

  • 1 <= nums.length <= 10^4
  • 1 <= nums[i] <= 10^9
  • 1 <= k <= 10^9
  • 1 <= multiplier <= 10^6

思路

有一个数组 nums,我们需要执行 k 次操作,每次操作选择数组中最小元素 min,并将它的值替换为 min * multiplier,返回最终的数组。数据范围比 3264.K次乘运算后的最终数组I 大,multiplier 也大,会溢出,需要进行取余运算。

首先 k 最大 10^9,还沿用昨天模拟的解法会超时。更重要的是,由于乘积很大,我们只能在队列中保存取余后的数据,如果还按找之前模拟来取最小元素就不对了。

我们发现,当执行一些次操作之后,所有元素都会被乘以 multiplier,当 k / n 比较大时,我们可以使用快速幂先计算出 multiplierk/n 幂,然后再与元素相乘。

关键在于何时开始使用上面的思路来计算,考虑 1 2 4 8 16multiplier2,k 为 20

2   2   4   8   16
4   2   4   8   16
4   4   4   8   16
8   4   4   8   16
8   8   4   8   16
8   8   8   8   16
16  8   8   8   16
16  16  8   8   16
16  16  16  8   16
16  16  16  16  16

可以发现 当前数组 最小值 乘以 multiplier 大于 原数组 元素的 最大值 时,后面再乘以 multiplier 就是每一个元素执行一次了。

因此我们需要先使用堆模拟前面几次操作,直到满足上面的条件。注意:堆中数据不能取模,满足条件之前堆中数据使用 long 型不会溢出。

代码


/**
 * @date 2024-12-14 10:31
 */
public class GetFinalState3266 {

    public int[] getFinalState(int[] nums, int k, int multiplier) {
        if (multiplier == 1) {
            return nums;
        }
        int mod = 1000000007;
        int n = nums.length;
        long[] mul = new long[n];
        for (int i = 0; i < n; i++) {
            mul[i] = nums[i];
        }
        PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> {
            long compare = mul[a] - mul[b];
            if (compare != 0) {
                return (int) compare;
            }
            return a - b;
        });
        long max = 0;
        for (int i = 0; i < n; i++) {
            q.offer(i);
            max = Math.max(max, nums[i]);
        }
        int i = 0;
        for (; i < k; i++) {
            if (mul[q.peek()] * (long) multiplier > max) {
                break;
            }
            Integer index = q.poll();
            mul[index] = mul[index] * multiplier;
            q.offer(index);
        }
        int remainder = k - i;
        if (remainder >= n) {
            long pow = pow(multiplier, remainder / n);
            for (int j = 0; j < n; j++) {
                Integer index = q.poll();
                int rem = remainder % n;
                mul[index] = (int) ((mul[index] * pow % mod * (j < rem ? (long) multiplier : 1)) % mod);
            }
        } else {
            for (int j = 0; j < remainder; j++) {
                Integer index = q.poll();
                mul[index] = (int) ((mul[index] * (long) multiplier) % mod);
                q.offer(index);
            }
        }
        for (int j = 0; j < n; j++) {
            nums[j] = (int) mul[j];
        }
        return nums;
    }

    public long pow(long base, int exponent) {
        long res = 1;
        int mod = 1000000007;
        while (exponent > 0) {
            if ((exponent & 1) == 1) {
                res = res * base % mod;
            }
            base = base * base % mod;
            exponent >>= 1;
        }
        return res;
    }

}

性能

3264.K次乘运算后的最终数组I

目标

给你一个整数数组 nums ,一个整数 k 和一个整数 multiplier 。

你需要对 nums 执行 k 次操作,每次操作中:

  • 找到 nums 中的 最小 值 x ,如果存在多个最小值,选择最 前面 的一个。
  • 将 x 替换为 x * multiplier 。

请你返回执行完 k 次乘运算之后,最终的 nums 数组。

示例 1:

输入:nums = [2,1,3,5,6], k = 5, multiplier = 2
输出:[8,4,6,5,6]
解释:
操作 结果
1 次操作后 [2, 2, 3, 5, 6]
2 次操作后 [4, 2, 3, 5, 6]
3 次操作后 [4, 4, 3, 5, 6]
4 次操作后 [4, 4, 6, 5, 6]
5 次操作后 [8, 4, 6, 5, 6]

示例 2:

输入:nums = [1,2], k = 3, multiplier = 4
输出:[16,8]
解释:
操作 结果
1 次操作后 [4, 2]
2 次操作后 [4, 8]
3 次操作后 [16, 8]

说明:

  • 1 <= nums.length <= 100
  • 1 <= nums[i] <= 100
  • 1 <= k <= 10
  • 1 <= multiplier <= 5

思路

有一个数组 nums,我们需要执行 k 次操作,每次操作选择数组中最小元素 min,并将它的值替换为 min * multiplier,返回最终的数组。

使用最小堆,堆中元素为 [value, index],获取堆顶元素,将其值乘以 multiplier 再放回堆中,操作完 k 次之后,遍历堆中元素,根据 index 重写 nums 即可。需要注意处理值相等的情况,堆排序不稳定。

代码


/**
 * @date 2024-12-13 2:13
 */
public class GetFinalState3264 {

    public int[] getFinalState(int[] nums, int k, int multiplier) {
        int n = nums.length;
        // 注意这里需要处理相等的情况,堆排序是不稳定的
        PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> {
            int compare = nums[a] - nums[b];
            if (compare != 0){
                return compare;
            }
            return a - b;
        });
        for (int i = 0; i < n; i++) {
            q.offer(i);
        }
        for (int i = 0; i < k; i++) {
            int index = q.poll();
            nums[index] *= multiplier;
            q.offer(index);
        }
        return nums;
    }
}

性能

2931.购买物品的最大开销

目标

给你一个下标从 0 开始大小为 m * n 的整数矩阵 values ,表示 m 个不同商店里 m * n 件不同的物品。每个商店有 n 件物品,第 i 个商店的第 j 件物品的价值为 values[i][j] 。除此以外,第 i 个商店的物品已经按照价值非递增排好序了,也就是说对于所有 0 <= j < n - 1 都有 values[i][j] >= values[i][j + 1]

每一天,你可以在一个商店里购买一件物品。具体来说,在第 d 天,你可以:

  • 选择商店 i 。
  • 购买数组中最右边的物品 j ,开销为 values[i][j] * d 。换句话说,选择该商店中还没购买过的物品中最大的下标 j ,并且花费 values[i][j] * d 去购买。

注意,所有物品都视为不同的物品。比方说如果你已经从商店 1 购买了物品 0 ,你还可以在别的商店里购买其他商店的物品 0 。

请你返回购买所有 m * n 件物品需要的 最大开销 。

示例 1:

输入:values = [[8,5,2],[6,4,1],[9,7,3]]
输出:285
解释:第一天,从商店 1 购买物品 2 ,开销为 values[1][2] * 1 = 1 。
第二天,从商店 0 购买物品 2 ,开销为 values[0][2] * 2 = 4 。
第三天,从商店 2 购买物品 2 ,开销为 values[2][2] * 3 = 9 。
第四天,从商店 1 购买物品 1 ,开销为 values[1][1] * 4 = 16 。
第五天,从商店 0 购买物品 1 ,开销为 values[0][1] * 5 = 25 。
第六天,从商店 1 购买物品 0 ,开销为 values[1][0] * 6 = 36 。
第七天,从商店 2 购买物品 1 ,开销为 values[2][1] * 7 = 49 。
第八天,从商店 0 购买物品 0 ,开销为 values[0][0] * 8 = 64 。
第九天,从商店 2 购买物品 0 ,开销为 values[2][0] * 9 = 81 。
所以总开销为 285 。
285 是购买所有 m * n 件物品的最大总开销。

示例 2:

输入:values = [[10,8,6,4,2],[9,7,5,3,2]]
输出:386
解释:第一天,从商店 0 购买物品 4 ,开销为 values[0][4] * 1 = 2 。
第二天,从商店 1 购买物品 4 ,开销为 values[1][4] * 2 = 4 。
第三天,从商店 1 购买物品 3 ,开销为 values[1][3] * 3 = 9 。
第四天,从商店 0 购买物品 3 ,开销为 values[0][3] * 4 = 16 。
第五天,从商店 1 购买物品 2 ,开销为 values[1][2] * 5 = 25 。
第六天,从商店 0 购买物品 2 ,开销为 values[0][2] * 6 = 36 。
第七天,从商店 1 购买物品 1 ,开销为 values[1][1] * 7 = 49 。
第八天,从商店 0 购买物品 1 ,开销为 values[0][1] * 8 = 64 。
第九天,从商店 1 购买物品 0 ,开销为 values[1][0] * 9 = 81 。
第十天,从商店 0 购买物品 0 ,开销为 values[0][0] * 10 = 100 。
所以总开销为 386 。
386 是购买所有 m * n 件物品的最大总开销。

说明:

  • 1 <= m == values.length <= 10
  • 1 <= n == values[i].length <= 10^4
  • 1 <= values[i][j] <= 10^6
  • values[i] 按照非递增顺序排序。

思路

m 个商店,每个商店里有 n 个商品。values[i][j] 表示商店 i 中商品 j 的价值,values[i] 非严格递减。从第一天开始,在第 d 天,我们可以选择一个商店 i,花费 d * values[i][j] 购买剩余的商品中价值中最小的商品 j。返回购买完所有商店的所有商品所需的最大开销。

要使开销最大,我们应该优先购买价值最小的商品,因为开销有天数加成,价值越大,在后面买翻倍后开销更大。由于每个商店里的商品是非严格递减的,每次从所有商店末尾取价值最小的商品,实际上就是按照所有商店的所有商品的价值从小到大取。

我们可以使用最小堆维护每个商店的最后一个商品,堆中元素记录商店编号 i,与商品下标 j

如果是求最小开销呢?

如果没有限制购买规则,显然先购买高价值商品花费最小。但是题目规定每一次任选一个商店从其剩余商品中的最后一个(剩余商品中价值最低的)商品购买。

我们应该从 左边 开始优先购买价值 最小 的商品,然后将顺序 反转 就得到了从右购买的序列,按照这个顺序计算购买的开销。

注意:不能从右边选最大的买,比如:

100000 90000 1
100    10    2

如果从右边取最大的,购买顺序为 2 10 100 1 90000 100000,这显然不是最小开销。而从左边取最小的买,顺序为 100 10 2 100000 90000 1,反转得到 1 90000 100000 2 10 100 按此顺序购买花费最小。

代码


/**
 * @date 2024-12-12 14:11
 */
public class MaxSpending2931 {

    /**
     * 13ms
     * 直接合并为一维数组后排序
     * 时间复杂度 O(mnlog(mn))
     * 执行快是因为不用维护堆以及操作堆中数据的值,每次计算的复杂度小于维护数据结构的复杂度
     */
    public long maxSpending_v2(int[][] values) {
        int m = values.length;
        int n = values[0].length;
        long res = 0L;
        long d = 1L;
        int[] v = new int[m * n];
        for (int i = 0; i < m; i++) {
            System.arraycopy(values[i], 0, v, i * n, n);
        }
        Arrays.sort(v);
        for (int i : v) {
            res += d++ * i;
        }
        return res;
    }

    /**
     * 37ms
     * 时间复杂度 O(mnlog(m))
     */
    public long maxSpending(int[][] values) {
        int m = values.length;
        int n = values[0].length;
        PriorityQueue<int[]> q = new PriorityQueue<>(m, (a, b) -> a[0] - b[0]);
        for (int i = 0; i < m; i++) {
            q.offer(new int[]{values[i][n - 1], i, n - 1});
        }
        long res = 0L;
        long d = 1L;
        while (!q.isEmpty()) {
            int[] goods = q.poll();
            int storeIndex = goods[1];
            res += d++ * goods[0];
            int p = --goods[2];
            if (p >= 0) {
                q.offer(new int[]{values[storeIndex][p], storeIndex, p});
            }
        }
        return res;
    }

}

性能

2717.半有序排列

目标

给你一个下标从 0 开始、长度为 n 的整数排列 nums 。

如果排列的第一个数字等于 1 且最后一个数字等于 n ,则称其为 半有序排列 。你可以执行多次下述操作,直到将 nums 变成一个 半有序排列 :

  • 选择 nums 中相邻的两个元素,然后交换它们。

返回使 nums 变成 半有序排列 所需的最小操作次数。

排列 是一个长度为 n 的整数序列,其中包含从 1 到 n 的每个数字恰好一次。

示例 1:

输入:nums = [2,1,4,3]
输出:2
解释:可以依次执行下述操作得到半有序排列:
1 - 交换下标 0 和下标 1 对应元素。排列变为 [1,2,4,3] 。
2 - 交换下标 2 和下标 3 对应元素。排列变为 [1,2,3,4] 。
可以证明,要让 nums 成为半有序排列,不存在执行操作少于 2 次的方案。

示例 2:

输入:nums = [2,4,1,3]
输出:3
解释:
可以依次执行下述操作得到半有序排列:
1 - 交换下标 1 和下标 2 对应元素。排列变为 [2,1,4,3] 。
2 - 交换下标 0 和下标 1 对应元素。排列变为 [1,2,4,3] 。
3 - 交换下标 2 和下标 3 对应元素。排列变为 [1,2,3,4] 。
可以证明,要让 nums 成为半有序排列,不存在执行操作少于 3 次的方案。

示例 3:

输入:nums = [1,3,4,2,5]
输出:0
解释:这个排列已经是一个半有序排列,无需执行任何操作。

说明:

  • 2 <= nums.length == n <= 50
  • 1 <= nums[i] <= 50
  • nums 是一个 排列

思路

有一个数组 nums,求将最小值移动到第一个位置,最大值移动到最后一个位置需要的最小操作次数。

我们可以记录数组中第一个出现的最小值以及最后一个出现的最大值的下标,记为 minIndexmaxIndex,如果 minIndex > maxIndex,最少交换次数为 minIndex + n - maxIndex - 2,否则为 minIndex + n - maxIndex - 1

注意:交换次数等于 minIndex 前面的元素个数 加上 maxIndex 后面的元素个数,如果 minIndex > maxIndex,当我们将最小值放到第一个位置时,maxIndex 已经向后移了一位。

代码


/**
 * @date 2024-12-11 8:47
 */
public class SemiOrderedPermutation2717 {

    public int semiOrderedPermutation(int[] nums) {
        int n = nums.length;
        int minIndex = 0;
        int maxIndex = 0;
        for (int i = 0; i < n; i++) {
            if (nums[i] < nums[minIndex]) {
                minIndex = i;
            } else if (nums[i] >= nums[maxIndex]) {
                maxIndex = i;
            }
        }
        int res = minIndex + n - maxIndex - 1;
        return minIndex > maxIndex ? res - 1 : res;
    }
}

性能

935.骑士拨号器

目标

象棋骑士有一个独特的移动方式,它可以垂直移动两个方格,水平移动一个方格,或者水平移动两个方格,垂直移动一个方格(两者都形成一个 L 的形状)。

象棋骑士可能的移动方式如下图所示:

我们有一个象棋骑士和一个电话垫,如下所示,骑士只能站在一个数字单元格上(即蓝色单元格)。

给定一个整数 n,返回我们可以拨多少个长度为 n 的不同电话号码。

你可以将骑士放置在任何数字单元格上,然后你应该执行 n - 1 次移动来获得长度为 n 的号码。所有的跳跃应该是有效的骑士跳跃。

因为答案可能很大,所以输出答案模 10^9 + 7.

示例 1:

输入:n = 1
输出:10
解释:我们需要拨一个长度为1的数字,所以把骑士放在10个单元格中的任何一个数字单元格上都能满足条件。

示例 2:

输入:n = 2
输出:20
解释:我们可以拨打的所有有效号码为[04, 06, 16, 18, 27, 29, 34, 38, 40, 43, 49, 60, 61, 67, 72, 76, 81, 83, 92, 94]

示例 3:

输入:n = 3131
输出:136006598
解释:注意取模

说明:

  • 1 <= n <= 5000

思路

有一个电话键盘,布局如下:

1  2  3
4  5  6
7  8  9
*  0  #

开始时,将一个骑士棋子放在数字键上,然后按照国际象棋骑士的走法(类似于中国象棋里的马)走 n - 1 步,问能够组成多少种长度为 n 的不同号码(不能走到 *#)。

这道题与 688.骑士在棋盘上的概率 类似,只不过棋盘更小,状态转移是确定的。

定义 dp[k][i] 表示以 i 结尾长度为 k 的号码组合数。初始时,dp[1][i] 均为 1。状态转移方程,针对不同的数字有所不同,例如 dp[k][1] = dp[k - 1][8] + dp[k - 1][6]dp[k][4] = dp[k - 1][3] + dp[k - 1][9] + dp[k - 1][0]等等。

1 - 6 - 7
|   |   |
8   0   2
|   |   |
3 - 4 - 9

仔细分析可以得到上面的状态转化图,1 3 7 9 的结果是完全相同的,同理 2 8 也可以认为是一个状态,4 6 是一个状态,0 是一个状态。定义以上 4 个状态为 a b c d,那么最终结果可以表示为 4 * dp[n][a] + 2 * dp[n][b] + 2 * dp[n][c] + dp[n][d],状态转移方程为:

  • dp[k][a] = dp[k - 1][b] + dp[k - 1][c]
  • dp[k][b] = 2 * dp[k - 1][a]
  • dp[k][c] = 2 * dp[k - 1][a] + dp[k - 1][d]
  • dp[k][d] = 2 * dp[k - 1][c]

注意 k 的初值为 2k == 1 是特殊情况,骑士可以在数字 5,但是无法继续移动。dp[2][a] = 2, dp[2][b] = 2, dp[2][c] = 3, dp[2][d] = 2

如果写成矩阵的形式 列向量 dp[k] 等于 A · dp[k - 1],其中矩阵 A 为:

0 1 1 0
2 0 0 0
2 0 0 1
0 0 2 0

因此 dp[n] = A^(n - 1) · dp[1],其中 dp[1] = [1, 1, 1, 1]。我们可以使用矩阵的快速幂求解。

代码


/**
 * @date 2024-12-10 9:39
 */
public class KnightDialer935 {

    public static int mod = 1000000007;

    public int knightDialer_v3(int n) {
        if (n == 1) {
            return 10;
        }
        long[][] A = new long[][]{
                {0, 1, 1, 0},
                {2, 0, 0, 0},
                {2, 0, 0, 1},
                {0, 0, 2, 0},
        };
        A = pow(A, n - 1);
        long[] res = new long[4];
        for (int i = 0; i < 4; i++) {
            for (int j = 0; j < 4; j++) {
                res[i] += A[i][j];
            }
        }
        return (int) ((4 * res[0] + 2 * res[1] + 2 * res[2] + res[3]) % mod);
    }

    public long[][] pow(long[][] A, int exponent) {
        long[][] res = new long[][]{
                {1, 0, 0, 0},
                {0, 1, 0, 0},
                {0, 0, 1, 0},
                {0, 0, 0, 1},
        };
        while (exponent > 0) {
            if ((exponent & 1) == 1) {
                res = mul(A, res);
            }
            A = mul(A, A);
            exponent >>= 1;
        }
        return res;
    }

    public long[][] mul(long[][] A1, long[][] A2) {
        long[][] res = new long[4][4];
        for (int i = 0; i < 4; i++) {
            for (int k = 0; k < 4; k++) {
                if (A1[i][k] == 0) {
                    continue;
                }
                for (int j = 0; j < 4; j++) {
                    res[i][j] = (res[i][j] + A1[i][k] * A2[k][j]) % mod;
                }
            }
        }
        return res;
    }

    public static long[][] dp;
    public static int MAX = 5001;

    static {
        dp = new long[MAX][4];
        dp[2][0] = 2;
        dp[2][1] = 2;
        dp[2][2] = 3;
        dp[2][3] = 2;
        for (int k = 3; k < MAX; k++) {
            dp[k][0] = (dp[k - 1][1] + dp[k - 1][2]) % mod;
            dp[k][1] = (2 * dp[k - 1][0]) % mod;
            dp[k][2] = (2 * dp[k - 1][0] + dp[k - 1][3]) % mod;
            dp[k][3] = (2 * dp[k - 1][2]) % mod;
        }
    }

    public int knightDialer_v2(int n) {
        if (n == 1) {
            return 10;
        }
        return (int)((4 * dp[n][0] + 2 * dp[n][1] + 2 * dp[n][2] + dp[n][3]) % mod);
    }

    public int knightDialer_v1(int n) {
        long[][] dp = new long[n + 1][10];
        dp[1] = new long[]{1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
        int MOD = 1000000007;
        int res = 0;
        for (int k = 2; k <= n; k++) {
            dp[k][0] = (dp[k - 1][4] + dp[k - 1][6]) % MOD;
            dp[k][1] = (dp[k - 1][6] + dp[k - 1][8]) % MOD;
            dp[k][2] = (dp[k - 1][7] + dp[k - 1][9]) % MOD;
            dp[k][3] = (dp[k - 1][4] + dp[k - 1][8]) % MOD;
            dp[k][4] = (dp[k - 1][3] + dp[k - 1][9] + dp[k - 1][0]) % MOD;
            dp[k][6] = (dp[k - 1][1] + dp[k - 1][7] + dp[k - 1][0]) % MOD;
            dp[k][7] = (dp[k - 1][2] + dp[k - 1][6]) % MOD;
            dp[k][8] = (dp[k - 1][1] + dp[k - 1][3]) % MOD;
            dp[k][9] = (dp[k - 1][2] + dp[k - 1][4]) % MOD;
        }
        for (int i = 0; i < 10; i++) {
            res = (int) (res + dp[n][i]) % MOD;
        }
        return res;
    }

}

性能

1812.判断国际象棋棋盘中一个格子的颜色

目标

给你一个坐标 coordinates ,它是一个字符串,表示国际象棋棋盘中一个格子的坐标。下图是国际象棋棋盘示意图。

如果所给格子的颜色是白色,请你返回 true,如果是黑色,请返回 false 。

给定坐标一定代表国际象棋棋盘上一个存在的格子。坐标第一个字符是字母,第二个字符是数字。

示例 1:

输入:coordinates = "a1"
输出:false
解释:如上图棋盘所示,"a1" 坐标的格子是黑色的,所以返回 false 。

示例 2:

输入:coordinates = "h3"
输出:true
解释:如上图棋盘所示,"h3" 坐标的格子是白色的,所以返回 true 。

示例 3:

输入:coordinates = "c7"
输出:false

提示:

  • coordinates.length == 2
  • 'a' <= coordinates[0] <= 'h'
  • '1' <= coordinates[1] <= '8'

思路

有一个 8 x 8 的棋盘,行编号为 1 ~ 8,列编号为 a ~ h,给定一个坐标比如 c3,如果格子为白色返回 true,黑色返回 false

经过观察,奇数行奇数列,偶数行偶数列为黑色,偶数行奇数列,奇数行偶数列为白色。我们只需判断横纵坐标之和是否为奇数即可。

需要注意的是,将字符串映射为下标数字 0 ~ 7,并不影响上面的判断。

代码


/**
 * @date 2024-12-09 0:11
 */
public class SquareIsWhite1812 {

    public boolean squareIsWhite(String coordinates) {
        int x = coordinates.charAt(0) - '1';
        int y = coordinates.charAt(1) - 'a';
        return (x + y) % 2 == 1;
    }
}

性能

782.变为棋盘

目标

一个 n x n 的二维网络 board 仅由 0 和 1 组成 。每次移动,你能交换任意两列或是两行的位置。

返回 将这个矩阵变为 “棋盘” 所需的最小移动次数 。如果不存在可行的变换,输出 -1。

“棋盘” 是指任意一格的上下左右四个方向的值均与本身不同的矩阵。

示例 1:

输入: board = [[0,1,1,0],[0,1,1,0],[1,0,0,1],[1,0,0,1]]
输出: 2
解释:一种可行的变换方式如下,从左到右:
第一次移动交换了第一列和第二列。
第二次移动交换了第二行和第三行。

示例 2:

输入: board = [[0, 1], [1, 0]]
输出: 0
解释: 注意左上角的格值为0时也是合法的棋盘.

示例 3:

输入: board = [[1, 0], [1, 0]]
输出: -1
解释: 任意的变换都不能使这个输入变为合法的棋盘。

说明:

  • n == board.length
  • n == board[i].length
  • 2 <= n <= 30
  • board[i][j] 将只包含 0或 1

思路

有一个 n x n 的网格,仅由 01 组成。每次移动可以交换网格的任意两行或两列。求将网格变为棋盘的最小移动次数,如果无法变为棋盘返回 -1。所谓棋盘,指的是任意格子的值与它周围四个格子的值不同。

首先需要分析出可以转变为棋盘的条件,棋盘只有两种类型的行,它们互反,且这两种行的个数相差至多为 1。对于每种类型的行,0 的个数和 1 的个数相差至多也是 1

然后需要求出当前行与列转化为 010101…… 或者 101010…… 所需的移动次数。求出位置不同的个数 diff,如果 n 为偶数,最小交换次数为 Math.min(diff, n - diff),如果 n 为奇数,最小交换次数为 diff/2

代码


/**
 * @date 2024-12-09 8:46
 */
public class MovesToChessboard782 {

    public int movesToChessboard(int[][] board) {
        int n = board.length;
        int[] firstRow = board[0];
        int[] firstCol = new int[n];
        int[] firstRowCnt = new int[2];
        int[] firstColCnt = new int[2];
        for (int i = 0; i < n; i++) {
            firstRowCnt[board[0][i]]++;
            firstColCnt[board[i][0]]++;
            firstCol[i] = board[i][0];
        }

        // 第一行或者第一列0与1的个数之差超过1就无法转化为棋盘。因为最终棋盘的行与列都是 101010…… 或 010101…… 的形式
        if (Math.abs(firstRowCnt[0] - firstRowCnt[1]) > 1 || Math.abs(firstColCnt[0] - firstColCnt[1]) > 1) {
            return -1;
        }

        // 判断行是否完全相同或者完全相反,这里使用异或运算来判断,如果equal == 0 说明完全相同,opposite == 0 说明完全相反,如果都不等于0说明无法转为棋盘
        for (int i = 1; i < n; i++) {
            int equal = 0;
            int opposite = 0;
            for (int j = 0; j < board[i].length; j++) {
                int tmp = board[i][j] ^ board[0][j];
                equal += tmp;
                opposite += 1 ^ tmp;
            }
            if (equal != 0 && opposite != 0) {
                return -1;
            }

        }

        // 经过前面的判断,第一行与第一列的第一个格子的值一定是相同的
        return minMove(firstRow, firstRowCnt) + minMove(firstCol, firstColCnt);
    }

    public int minMove(int[] arr, int[] cnt) {
        int n = arr.length;
        int start = cnt[1] > cnt[0] ? 1 : 0;
        int diff = 0;
        // 计算与棋盘的差异,我们移动一次可以减少两个 diff,因此最终结果需要除以2
        for (int i = 0; i < n; i++) {
            // i % 2 ^ start 的作用是确定 1010…… 还是 0101……,如果不考虑start 那么序列是 0101,如果需要以1开头,就需要 异或 1
            diff += i % 2 ^ start ^ arr[i];
        }
        // 这里考虑的是 n 的奇偶性,如果n为奇数,那么必定 abs(cnt[1] - cnt[0]) == 1,多的那一个一定要放在第一个位置,移动的方案只有一种
        // 如果为偶数,最终可以是 0101…… 或者 1010……,取移动次数最小的
        return n % 2 != 0 ? diff / 2 : Math.min(diff, n - diff) / 2;
    }

}

性能