928.尽量减少恶意软件的传播II

目标

给定一个由 n 个节点组成的网络,用 n x n 个邻接矩阵 graph 表示。在节点网络中,只有当 graph[i][j] = 1 时,节点 i 能够直接连接到另一个节点 j。

一些节点 initial 最初被恶意软件感染。只要两个节点直接连接,且其中至少一个节点受到恶意软件的感染,那么两个节点都将被恶意软件感染。这种恶意软件的传播将继续,直到没有更多的节点可以被这种方式感染。

假设 M(initial) 是在恶意软件停止传播之后,整个网络中感染恶意软件的最终节点数。

我们可以从 initial 中删除一个节点,并完全移除该节点以及从该节点到任何其他节点的任何连接。

请返回移除后能够使 M(initial) 最小化的节点。如果有多个节点满足条件,返回索引 最小的节点 。

示例 1:

输入:graph = [[1,1,0],[1,1,0],[0,0,1]], initial = [0,1]
输出:0

示例 2:

输入:graph = [[1,1,0],[1,1,1],[0,1,1]], initial = [0,1]
输出:1

示例 3:

输入:graph = [[1,1,0,0],[1,1,1,0],[0,1,1,1],[0,0,1,1]], initial = [0,1]
输出:1

说明:

  • n == graph.length
  • n == graph[i].length
  • 2 <= n <= 300
  • graph[i][j] 是 0 或 1.
  • graph[i][j] == graph[j][i]
  • graph[i][i] == 1
  • 1 <= initial.length < n
  • 0 <= initial[i] <= n - 1
  • initial 中每个整数都不同

思路

这个和昨天的题的区别是移除节点之后原来连通的区域可能就断开了。刚开始想,昨天的需要排除掉同一连通区域存在多个感染节点的情况,今天这个就不能排除了。但是其影响的节点数也不能通过连通区域节点个数来计算。处理起来就比较复杂了,不能简单地根据直接相连的节点数来判断。当连通区域中含有多个感染节点时,需要区分边缘感染节点与中间感染节点,边缘感染节点又与孤立的感染节点相同,都是减少1。然后还要考虑连通区域仅有一个感染节点的情况。

区分 单一边缘感染节点 与 孤立感染节点

2、3 感染,返回3

0 - 1
|
3

2

无需区分 多个边缘感染节点 与 孤立感染节点

1、2、3 感染,返回1

0 - 1
|
3

2

区分 中间感染节点 与 孤立感染节点,并且不能仅根据直接相连的非感染节点来判断

0 、2、4、8 感染,返回8

     7
     | \
0    4 - 6
     |
1 -  8 - 3
     |
2    5

错了好多次,终于调试过了。正面确实不太好求解。总结一下就是:

  1. 连通区域存在多个感染节点
    • 去掉边缘的感染节点,感染节点总数减少1,全是边缘感染节点与包含中间感染节点是一样的
    • 去掉非边缘感染节点,需要dfs获取不含感染节点路径的节点总数
  2. 连通区域仅有1个感染节点(可以是孤立感染节点、边缘节点、中间节点)
    • 感染节点总数减少连通区域节点个数

最终答案需要获取以上减少最多的节点,如果存在多个,返回下标最小的。

代码里是按边缘感染节点与中间感染节点分的:

  1. 边缘感染节点
    • 孤立感染节点,减1
    • 连通区域内有多个边缘感染节点,减1
    • 连通区域内仅有一个边缘感染节点,减连通区域节点个数
  2. 中间感染节点(如果存在中间节点就不考虑边缘节点了,因为题目中限制了1 <= initial.length < n,一定存在可以减少2个的中间节点,分析到这里时我以为我发现了官网的漏洞,错误的实现也能通过,想要贡献测试用例呢,结果提示测试用例非有效值。如果是小于等于n这个解法就得多一个判断条件initial.length == n,直接取最小下标
    • 仅有一个中间感染节点,连通区域节点个数
    • 有多个中间感染节点,dfs搜索不含感染节点路径上的非感染节点个数,如果有感染节点,那么它也是减1,不过这里不再比较了,原因上面也说过了。

代码中d存的是中间节点(包括指向自身的边大于2),如果d为空则表示连通区域全是边缘感染节点(边为2),或孤立感染节点(边为1)。

对于全是边缘感染节点与孤立感染节点的情况,取下标最小即可。而对于中间感染节点,通过dfs来查找连通个数。如果通过dfs查找的个数为1,并且它还是中间感染节点,那么它周围全是感染节点。按道理来说,应该与边缘节点一起取最小下标。但是题目给出了限制,那么一定存在一个可以减少2的中间节点。

通过上面的分析只是说明了该问题正向分析的复杂性,如果不是不断尝试,很难直接把上面的所有情况想清楚。所以,上面的分析也没有太大的用处,过一段时间重做这个题,还是会踩坑。

官网题解使用的是逆向思维,统计的是从每个非感染节点出发不经过感染节点所经历的个数,在dfs过程中使用状态机来标识感染节点的个数。如果只遇到了1个感染节点,那么累加刚才遍历的节点个数,而如果有多个,那么就只能减少它自己。因此,如果存在只遇到一个感染节点的情况,就取个数最大的。否则取下标最小的。

其实,只遇到一个感染节点的情况包括了上面的单一边缘感染节点、中间单一感染节点以及多个中间感染节点(dfs非感染个数不为0的情况,即路径上不含有感染节点)的情况,而遇到多个感染节点,则说明被多个感染节点包围/半包围(对应全是边缘节点、边缘与中间、全中间,后面两种情况上面的算法忽略掉了),并且取最小下标直接包括了孤立感染节点。

可以发现同样是一步处理,我们赋予它不同的内涵,其所应对的场景就大为不同。

代码


/**
 * @date 2024-04-17 8:46
 */
public class MinMalwareSpread928 {
    public int[] u;
    TreeSet<Integer> s;
    HashSet<Integer> d = new HashSet<>();
    List<Integer>[] g;

    public void merge(int x, int y) {
        HashSet<Integer> tmp = new HashSet<>();
        int rx = find(x, tmp);
        int ry = find(y, tmp);
        d.addAll(tmp);
        if (s.contains(rx) && s.contains(ry)) {
            if (rx > ry) {
                u[rx] = ry;
            } else if (rx < ry) {
                u[ry] = rx;
            }
        } else if (s.contains(ry)) {
            u[rx] = ry;
        } else {
            u[ry] = rx;
        }
    }

    public int find(int x, HashSet<Integer> tmp) {
        if (x != u[x]) {
            if (s.contains(x) && s.contains(u[x])) {
                if (g[x].size() > 2) {
                    tmp.add(x);
                }
                if (g[u[x]].size() > 2) {
                    tmp.add(u[x]);
                }
            }
            x = find(u[x], tmp);
        }
        return u[x];
    }

    public int find(int x) {
        if (x != u[x]) {
            x = find(u[x]);
        }
        return u[x];
    }

    public int count(int x) {
        int cnt = 0;
        int rt = find(x);
        for (int i = 0; i < u.length; i++) {
            if (rt == find(i)) {
                cnt++;
            }
        }
        return cnt;
    }

    public int countMalware(int x) {
        int cnt = 0;
        int rt = find(x);
        for (int i = 0; i < u.length; i++) {
            if (rt == find(i) && s.contains(i)) {
                cnt++;
            }
        }
        return cnt;
    }

    public int adjacencyUninfected(int x, int parent) {
        int cnt = 1;
        boolean[] visited = new boolean[u.length];
        for (Integer node : g[x]) {
            if (parent == node || node == x || visited[node]) {
                continue;
            }
            visited = new boolean[u.length];
            if (!s.contains(node)) {
                int subCnt = dfs(node, x, visited);
                if (subCnt != 0) {
                    cnt += subCnt;
                }
            }
        }
        return cnt;
    }

    public int dfs(int x, int parent, boolean[] visited) {
        if (s.contains(x)) {
            return 0;
        }
        int cnt = 1;
        for (Integer node : g[x]) {
            if (parent == node || node == x || visited[node]) {
                visited[node] = true;
                continue;
            }
            visited[node] = true;
            if (s.contains(node)) {
                return 0;
            }
            int subCnt = dfs(node, x, visited);
            if (subCnt == 0) {
                return 0;
            } else {
                cnt += subCnt;
            }
        }
        return cnt;
    }

    public int minMalwareSpread(int[][] graph, int[] initial) {
        int n = graph.length;
        g = new ArrayList[n];
        u = new int[n];
        for (int i = 0; i < n; i++) {
            g[i] = new ArrayList<>(n);
            u[i] = i;
        }

        s = new TreeSet<>();
        for (int i : initial) {
            s.add(i);
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (graph[i][j] == 1) {
                    g[i].add(j);
                    merge(i, j);
                }
            }
        }
        int res = Integer.MAX_VALUE;
        int tmp = Integer.MAX_VALUE;
        TreeSet<Integer> ini = new TreeSet<>((x, y) -> count(y) - count(x) == 0 ? (adjacencyUninfected(y, -1) - adjacencyUninfected(x, -1) == 0 ? x - y : adjacencyUninfected(y, -1) - adjacencyUninfected(x, -1)) : count(y) - count(x));
        if (d.isEmpty()) {
            // d为空表示连通区域仅有1个感染节点
            for (int i : initial) {
                if (countMalware(i) == 1 && count(i) > 1) {
                    // 连通区域节点数大于1
                    if (tmp == Integer.MAX_VALUE) {
                        tmp = i;
                    } else {
                        int ci = count(i);
                        int ct = count(tmp);
                        if (ci > ct) {
                            // 取连通区域节点数大的
                            tmp = i;
                        } else if (ci == ct) {
                            // 如果相等取下标小的
                            tmp = Math.min(i, tmp);
                        }
                    }
                } else {
                    // 对于孤立节点,直接取索引最小的即可
                    res = Math.min(i, res);
                }
            }
            // 如果全部是孤立节点,取res,否则取tmp
            return tmp == Integer.MAX_VALUE ? res : tmp;
        } else {
            ini.addAll(d);
        }

        return ini.first();
    }
}

性能

924.尽量减少恶意软件的传播

目标

给出了一个由 n 个节点组成的网络,用 n × n 个邻接矩阵图 graph 表示。在节点网络中,当 graph[i][j] = 1 时,表示节点 i 能够直接连接到另一个节点 j。

一些节点 initial 最初被恶意软件感染。只要两个节点直接连接,且其中至少一个节点受到恶意软件的感染,那么两个节点都将被恶意软件感染。这种恶意软件的传播将继续,直到没有更多的节点可以被这种方式感染。

假设 M(initial) 是在恶意软件停止传播之后,整个网络中感染恶意软件的最终节点数。

如果从 initial 中移除某一节点能够最小化 M(initial), 返回该节点。如果有多个节点满足条件,就返回索引最小的节点。

请注意,如果某个节点已从受感染节点的列表 initial 中删除,它以后仍有可能因恶意软件传播而受到感染。

示例 1:

输入:graph = [[1,1,0],[1,1,0],[0,0,1]], initial = [0,1]
输出:0

示例 2:

输入:graph = [[1,0,0],[0,1,0],[0,0,1]], initial = [0,2]
输出:0

示例 3:

输入:graph = [[1,1,1],[1,1,1],[1,1,1]], initial = [1,2]
输出:1

说明:

  • n == graph.length
  • n == graph[i].length
  • 2 <= n <= 300
  • graph[i][j] == 0 或 1.
  • graph[i][j] == graph[j][i]
  • graph[i][i] == 1
  • 1 <= initial.length <= n
  • 0 <= initial[i] <= n - 1
  • initial 中所有整数均不重复

思路

初始 已感染恶意软件的节点集合中去掉一个节点使得整个网络的感染节点数量最小,返回这个节点。注意,从初始被感染的集合中去除,并不代表后续不会再被感染。如果还有与它连通的恶意节点,那么仍会被感染,最终计算感染节点时要算上。

因此,如果被感染节点是连通的,去掉任一感染节点后,总的感染节点数量不会改变。这时需要将索引最小的节点返回。

刚开始的想法是先排除相互的连通的感染节点,然后取剩余节点中连接节点个数最多的那个。

这个想法没错,但是具体实现的时候,仅仅判断直接相连的两个节点是否同时在感染列表显然是不对的,因为存在间接连接的情况。并且直接从感染集合移除还好影响后续其它节点的判断。

于是想到了使用并查集。

官网的解法类似,将连通的节点染成同一颜色,然后在感染节点中看是否有颜色唯一的节点,即该连通区域中只有一个感染节点,然后找出连通区域节点数最大的,如果有多个颜色唯一节点,返回下标最小的。如果没有颜色唯一的节点,那么移除任一感染节点,总的感染数都不会减少,直接取下标最小的即可。

判断区域是否连通可以使用并查集,也可以使用深度优先搜索。

代码

/**
 * @date 2024-04-16 8:29
 */
public class MinMalwareSpread924 {

    public int[] u;
    TreeSet<Integer> s;
    HashSet<Integer> d = new HashSet<>();

    public void merge(int x, int y) {
        HashSet<Integer> tmp = new HashSet<>();
        int rx = find(x, tmp);
        int ry = find(y, tmp);
        d.addAll(tmp);
        if (s.contains(rx) && s.contains(ry)) {
            if (rx > ry) {
                u[rx] = ry;
            } else if (rx < ry) {
                u[ry] = rx;
            }
        } else if (s.contains(ry)) {
            u[rx] = ry;
        } else {
            u[ry] = rx;
        }
    }

    public int find(int x, HashSet<Integer> tmp) {
        if (x != u[x]) {
            if (s.contains(x) && s.contains(u[x])) {
                tmp.add(x);
                tmp.add(u[x]);
            }
            x = find(u[x], tmp);
        }
        return u[x];
    }

    public int find(int x) {
        if (x != u[x]) {
            x = find(u[x]);
        }
        return u[x];
    }

    public int count(int x) {
        int cnt = 0;
        int rt = find(x);
        for (int i = 0; i < u.length; i++) {
            if (rt == find(i)) {
                cnt++;
            }
        }
        return cnt;
    }

    public int minMalwareSpread(int[][] graph, int[] initial) {
        int n = graph.length;
        List<Integer>[] g = new ArrayList[n];
        u = new int[n];
        for (int i = 0; i < n; i++) {
            g[i] = new ArrayList<>(n);
            u[i] = i;
        }

        s = new TreeSet<>();
        for (int i : initial) {
            s.add(i);
        }
        int res = s.first();
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (graph[i][j] == 1) {
                    g[i].add(j);
                    merge(i, j);
                }
            }
        }
        if (s.size() == d.size()) {
            return res;
        }
        TreeSet<Integer> ini = new TreeSet<>((x, y) -> count(y) - count(x) == 0 ? x - y : count(y) - count(x));
        for (int i : initial) {
            if (!d.contains(i)) {
                ini.add(i);
            }
        }

        return ini.first();
    }

}

性能

1483.树节点的第k个祖先[倍增写法]

今天将1483-树节点的第k个祖先留的那个倍增代码写了一下。

有以下几点需要借鉴的:

  1. 向上取整(log2(x))的计算方法 ceil(log2(x)) = 32 - Integer.numberOfLeadingZeros(x - 1)
  2. 判断第i位是否为1的方式,我原先是判断k%2是否为1,将k减半,循环。其实可以使用位运算((k >> i) & 1) == 1 i从0自增,将k右移i位与1相与,得到i位上的值

238.除自身以外数组的乘积

目标

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。

题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。

请 不要使用除法,且在 O(n) 时间复杂度内完成此题。

示例 1:

输入: nums = [1,2,3,4]
输出: [24,12,8,6]

示例 2:

输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]

说明:

  • 2 <= nums.length <= 10^5
  • -30 <= nums[i] <= 30
  • 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内

进阶:你可以在 O(1) 的额外空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组 不被视为 额外空间。)

思路

最简单的想法是先计算所有元素的乘积,然后挨个除,但是题目要求不能用除法,略过。

后面又要求不要创建额外的空间,即最好只创建一个用于返回结果的数组。

考虑先保存数组元素的右/左侧的乘积,然后二次遍历计算左/右侧乘积,然后与之前保存的值相乘即可。

网友还有一种一次遍历的写法,初始化结果数组为1,同时从前计算左边乘积,从后计算右边乘积,但是每次循环执行了4次乘法,效率并不高。

代码

/**
 * @date 2024-04-07 11:35
 */
public class ProductExceptSelf238 {

    public int[] productExceptSelf(int[] nums) {
        int n = nums.length;
        int[] right = new int[n];
        right[n- 1] = 1;
        for (int i = n - 2; i >= 0; i--) {
            right[i] = nums[i + 1] * right[i + 1];
        }
        int left = 1;
        for (int i = 1; i < n; i++) {
            left *= nums[i - 1];
            right[i] *= left;
        }
        return right;
    }

    /**  一次遍历的版本 */
    public int[] productExceptSelf_v1(int[] nums) {
        int[] res = new int[nums.length];
        Arrays.fill(res, 1);
        int j = nums.length - 2;
        int left = 1, right = 1;
        for (int i = 1; i < nums.length; i++) {
            left *= nums[i - 1];
            right *= nums[j + 1];
            res[i] = left * res[i];
            res[j] = right * res[j];
            j--;
        }
        return res;
    }
}

性能

2924.找到冠军II

目标

一场比赛中共有 n 支队伍,按从 0 到 n - 1 编号。每支队伍也是 有向无环图(DAG, Directed Acyclic Graph) 上的一个节点。

给你一个整数 n 和一个下标从 0 开始、长度为 m 的二维整数数组 edges 表示这个有向无环图,其中 edges[i] = [ui, vi] 表示图中存在一条从 ui 队到 vi 队的有向边。

从 a 队到 b 队的有向边意味着 a 队比 b 队 强 ,也就是 b 队比 a 队 弱 。

在这场比赛中,如果不存在某支强于 a 队的队伍,则认为 a 队将会是 冠军 。

如果这场比赛存在 唯一 一个冠军,则返回将会成为冠军的队伍。否则,返回 -1 。

注意:

是形如 a1, a2, ..., an, an+1 的一个序列,且满足:节点 a1 与节点 an+1 是同一个节点;节点 a1, a2, ..., an 互不相同;对于范围 [1, n] 中的每个 i ,均存在一条从节点 ai 到节点 ai+1 的有向边。

有向无环图 是不存在任何环的有向图。

说明:

  • 1 <= n <= 100
  • m == edges.length
  • 0 <= m <= n * (n - 1) / 2
  • edges[i].length == 2
  • 0 <= edge[i][j] <= n - 1
  • edges[i][0] != edges[i][1]
  • 生成的输入满足:如果 a 队比 b 队强,就不存在 b 队比 a 队强
  • 生成的输入满足:如果 a 队比 b 队强,b 队比 c 队强,那么 a 队比 c 队强

思路

如果只有一个节点,那它就是冠军。入度非0的不是冠军。多个没有强弱关系的的节点,返回-1,例如,n=2,边为空。

只需计算没有被标记为weaker节点的index,如果多于1个返回-1。

代码

/**
 * @date 2024-04-13 19:22
 */
public class FindChampion2924 {
    public int findChampion(int n, int[][] edges) {
        boolean[] weaker = new boolean[n];
        for (int[] edge : edges) {
            weaker[edge[1]] = true;
        }
        int championIndex = -1;
        for (int i = 0; i < weaker.length; i++) {
            if (weaker[i]) {
                continue;
            }
            if (championIndex != -1) {
                return -1;
            }
            championIndex = i;
        }
        return championIndex;
    }
}

性能

2923.找到冠军I

目标

一场比赛中共有 n 支队伍,按从 0 到 n - 1 编号。

给你一个下标从 0 开始、大小为 n * n 的二维布尔矩阵 grid 。对于满足 0 <= i, j <= n - 1i != j 的所有 i, j :如果 grid[i][j] == 1,那么 i 队比 j 队 强 ;否则,j 队比 i 队 强 。

在这场比赛中,如果不存在某支强于 a 队的队伍,则认为 a 队将会是 冠军 。

返回这场比赛中将会成为冠军的队伍。

示例 1:

输入:grid = [[0,1],[0,0]]
输出:0
解释:比赛中有两支队伍。
grid[0][1] == 1 表示 0 队比 1 队强。所以 0 队是冠军。

示例 2:

输入:grid = [[0,0,1],[1,0,1],[0,0,0]]
输出:1
解释:比赛中有三支队伍。
grid[1][0] == 1 表示 1 队比 0 队强。
grid[1][2] == 1 表示 1 队比 2 队强。
所以 1 队是冠军。

说明:

  • n == grid.length
  • n == grid[i].length
  • 2 <= n <= 100
  • grid[i][j] 的值为 0 或 1
  • 对于所有 i, grid[i][i] 等于 0.
  • 对于满足 i != j 的所有 i, j ,grid[i][j] != grid[j][i] 均成立
  • 生成的输入满足:如果 a 队比 b 队强,b 队比 c 队强,那么 a 队比 c 队强

思路

行和为n-1或者列全为0的为冠军。

代码

/**
 * @date 2024-04-12 0:13
 */
public class FindChampion2923 {
    public int findChampion(int[][] grid) {
        int n = grid.length;
        for (int i = 0; i < n; i++) {
            int sum = 0;
            for (int j = 0; j < n; j++) {
                sum += grid[i][j];
            }
            if (sum == n - 1) {
                return i;
            }
        }
        return -1;
    }
}

性能

1766.互质树

目标

给你一个 n 个节点的树(也就是一个无环连通无向图),节点编号从 0 到 n - 1 ,且恰好有 n - 1 条边,每个节点有一个值。树的 根节点 为 0 号点。

给你一个整数数组 nums 和一个二维数组 edges 来表示这棵树。nums[i] 表示第 i 个点的值,edges[j] = [uj, vj] 表示节点 uj 和节点 vj 在树中有一条边。

当 gcd(x, y) == 1 ,我们称两个数 x 和 y 是 互质的 ,其中 gcd(x, y) 是 x 和 y 的 最大公约数 。

从节点 i 到 根 最短路径上的点都是节点 i 的祖先节点。一个节点 不是 它自己的祖先节点。

请你返回一个大小为 n 的数组 ans ,其中 ans[i]是离节点 i 最近的祖先节点且满足 nums[i] 和 nums[ans[i]] 是 互质的 ,如果不存在这样的祖先节点,ans[i] 为 -1 。

说明:

  • nums.length == n
  • 1 <= nums[i] <= 50
  • 1 <= n <= 10^5
  • edges.length == n - 1
  • edges[j].length == 2
  • 0 <= uj, vj < n
  • uj != vj

思路

今天这道题超时了,看了答案才发现节点值不超过50。没有注意到这个点,答案是先计算1到50内每个数字互质的数字列表。然后在dfs的时候记录节点值的最大深度,以及最近的编号。

我是直接记录了parent数组,一步一步向上找,在第35/37个案例超时了,这棵树是单链,并且除了根节点,向上找都不互质,只能从叶子找到根。

这样在递归中套递归直接堆栈溢出了。后来又将这两个递归分开,不溢出了,但还是超时。

后来又试图利用已求得的结果,记录了value -> 最近互质父节点编号的映射,错误地认为如果值相等就可以直接返回这个编号。其实是不对的,因为这二者之间的父节点也可能与当前节点互质。

其实我想到了应该维护一个去重的父节点序列,但是今天没时间了,只能去看答案了。预处理这个点没有想到,记录值的最大深度与最近编号这个也不好想,也许时间充裕可能会想到吧。

好多经过深度思考得到的复杂的算法,时间久了就会忘记许多细节。没必要非得自己想出来,有这时间多看看算法书进步的更快吧。

代码

// todo

性能

// todo

1702.修改后的最大二进制字符串

目标

给你一个二进制字符串 binary ,它仅有 0 或者 1 组成。你可以使用下面的操作任意次对它进行修改:

  • 操作 1 :如果二进制串包含子字符串 "00" ,你可以用 "10" 将其替换。

    比方说, "00010" -> "10010"

  • 操作 2 :如果二进制串包含子字符串 "10" ,你可以用 "01" 将其替换。

    比方说, "00010" -> "00001"

请你返回执行上述操作任意次以后能得到的 最大二进制字符串 。如果二进制字符串 x 对应的十进制数字大于二进制字符串 y 对应的十进制数字,那么我们称二进制字符串 x 大于二进制字符串 y 。

示例 1:

输入:binary = "000110"
输出:"111011"
解释:一个可行的转换为:
"000110" -> "000101" 
"000101" -> "100101" 
"100101" -> "110101" 
"110101" -> "110011" 
"110011" -> "111011"

示例 2:

输入:binary = "01"
输出:"01"
解释:"01" 没办法进行任何转换。

说明:

  • 1 <= binary.length <= 10^5
  • binary 仅包含 '0' 和 '1'

思路

看到这道题我最先想到的是使用字符串替换,先把00的都替换为10,直到不能替换为止。然后再替换10为01,直到不能替换为止。然后再从头替换,相当于是一个while里面套两个while。

通过对具体例子的观察可以发现将10替换为01不是无条件的,我甚至还写了比较字符串大小的方法,如果字符串变小了就不变了。但其实是不行的,因为中间过程确实存在变小的情况。

最后经过观察分析发现必须要前面有0才可以替换,因为这样可以将高位的0置为1。以01110为例,最后能够转换为10111。

于是就想通过replace方法替换捕获组来实现,例如匹配 0(1*)0,替换为 10(匹配到的1),试了一下发现replacement不支持。Pattern 类也是无法使用的。

基于上面的分析,我们可以通过算法模拟出替换过程,这里面需要用到双指针 starti

  1. 如果 starti 相同且都指向1,那么直接跳过
  2. 如果 starti 相差1,且 i 指向0,即00的情况,那么将 start 指向置1,start++
  3. 否则,如果 starti 相差大于1,且 i 指向0,即0(1+)0的情况,那么需要将start 指向置1,start 后面的置0,i 指向的置1 即可

需要注意的是,如果 starti 不同,那么 start 指向的一定是0。其实步骤2与3可以合并,只需先将 i 置1,然后再将 start 后面的置0即可。

看了官网的题解,还提供了一种直接构建的算法。

如果字符串中有多个0,总可以将它们通过10->01将其前移至第一个0的位置,然后通过00->10,使高位的0变为1。最终的结果中至多包含1个0。

因此,直接构建的方法是:从第一个0开始,后面的0全置为1,然后将第一个0后移 0的个数减1 个位置。

代码

/**
 * @date 2024-04-10 0:53
 */
public class MaximumBinaryString1702 {

    /** 直接构造 */
    public String maximumBinaryString_v2(String binary) {
        char[] b = binary.toCharArray();
        int firstZero = binary.indexOf('0');
        if (firstZero == -1) {
            return binary;
        }
        int cnt = 0;
        for (int i = firstZero; i < b.length; i++) {
            cnt += '1' - b[i];
            b[i] = '1';
        }
        b[firstZero + cnt - 1] = '0';
        return new String(b);
    }

    public String maximumBinaryString_v1(String binary) {
        char[] b = binary.toCharArray();
        int start = 0;
        for (int i = 0; i < b.length; i++) {
            if (start == i && '1' == b[i]) {
                start++;
            } else if (start <= i - 1 && '0' == b[i]) {
                b[start++] = '1';
                b[i] = '1';
                b[start] = '0';
            }
        }
        return new String(b);
    }

    public String maximumBinaryString(String binary) {
        char[] b = binary.toCharArray();
        int start = 0;
        for (int i = 0; i < b.length; i++) {
            if (start == i && '1' == b[i]) {
                start++;
            } else if (start == i - 1 && '0' == b[i]) {
                b[start++] = '1';
            } else if (start < i - 1 && '0' == b[i]) {
                b[start++] = '1';
                b[start] = '0';
                b[i] = '1';
            }
        }
        return new String(b);
    }

}

性能

2529.正整数和负整数的最大计数

目标

给你一个按 非递减顺序 排列的数组 nums ,返回正整数数目和负整数数目中的最大值。

  • 换句话讲,如果 nums 中正整数的数目是 pos ,而负整数的数目是 neg ,返回 pos 和 neg二者中的最大值。

注意:0 既不是正整数也不是负整数。

示例 1:

输入:nums = [-2,-1,-1,1,2,3]
输出:3
解释:共有 3 个正整数和 3 个负整数。计数得到的最大值是 3 。

示例 2:

输入:nums = [-3,-2,-1,0,0,1,2]
输出:3
解释:共有 2 个正整数和 3 个负整数。计数得到的最大值是 3 。

示例 3:

输入:nums = [5,20,66,1314]
输出:4
解释:共有 4 个正整数和 0 个负整数。计数得到的最大值是 4 。

说明:

  • 1 <= nums.length <= 2000
  • -2000 <= nums[i] <= 2000
  • nums 按 非递减顺序 排列。

进阶:你可以设计并实现时间复杂度为 O(log(n)) 的算法解决此问题吗?

思路

这个题简单做法就是循环计数,O(n)的时间复杂度。O(log(n))需要使用二分查找。Arrays.binarySearch() 是处理不了非严格递增的情况的,如果查找的key有多个,无法保证返回的是哪一个,通常就是中间的那一个。

这里的难点是弄清楚当有多个相同值的时候如何找到第一个。具体来说就是 low 与 high 的更新以及结束条件,自己可以用一个具体的例子来模拟查找的过程。

  • 结束条件是 low == high
  • 如果寻找下界,那么 nums[middle] >= key 更新 high = middlenums[middle] < key 更新 low = middle + 1。返回第一个大于等于key的index。
  • 如果寻找上界,那么 nums[middle] > key 更新 high = middle - 1nums[middle] <= key 更新 low = middle 寻找上界的话只需将等号去掉即可,得到的是第一个小于等于key的index+1。

为什么要 +1 或者 -1? 因为middle指的位置不等于key,不是我们要找的值,不应该再出现在下一次的查找范围内,这是能说的通的。其实最核心的目的是保证最终low、high指向同一个位置,防止出现low与high相差1,但是middle指向的位置也无法触发更新的情况。以[-3,0,0,3,4]为例,我们要找0的下界,如果low的更新不 +1,那么最终就是 low,middle 指向 -3,high 指向第一个0,这不是我们想要的。

代码


/**
 * @date 2024-04-09 1:33
 */
public class MaximumCount2529 {

    public int maximumCount(int[] nums) {
        int pos = 0;
        int neg = 0;
        for (int i = 0; i < nums.length; i++) {
            if (nums[i] < 0) {
                neg++;
            } else if (nums[i] > 0) {
                pos = nums.length - i;
                break;
            }
        }
        return Math.max(pos, neg);
    }

    /**
     * 二分查找
     */
    public int maximumCount_v2(int[] nums) {
        int neg = bs(nums, 0);
        int pos = bs(nums, 1);
        return Math.max(neg, nums.length - pos);
    }

    public int bs(int[] nums, int key) {
        int low = 0, high = nums.length;
        while (low != high) {
            int middle = (low + high) >> 1;
            if (nums[middle] >= key) {
                high = middle;
            } else {
                low = middle + 1;
            }
        }
        return low;
    }
}

性能

2009.使数组连续的最少操作数

目标

给你一个整数数组 nums 。每一次操作中,你可以将 nums 中 任意 一个元素替换成 任意 整数。

如果 nums 满足以下条件,那么它是 连续的 :

  • nums 中所有元素都是 互不相同 的。
  • nums 中 最大 元素与 最小 元素的差等于 nums.length - 1 。

比方说,nums = [4, 2, 5, 3] 是 连续的 ,但是 nums = [1, 2, 3, 5, 6] 不是连续的 。

请你返回使 nums 连续 的 最少 操作次数。

示例 1:

输入:nums = [4,2,5,3]
输出:0
解释:nums 已经是连续的了。

示例 2:

输入:nums = [1,2,3,5,6]
输出:1
解释:一个可能的解是将最后一个元素变为 4 。
结果数组为 [1,2,3,5,4] ,是连续数组。

示例 3:

输入:nums = [1,10,100,1000]
输出:3
解释:一个可能的解是:
- 将第二个元素变为 2 。
- 将第三个元素变为 3 。
- 将第四个元素变为 4 。
结果数组为 [1,2,3,4] ,是连续数组。

说明:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^9

思路

这道题让我们求将一个数组变为连续数组所需的最小操作,所谓连续数组指数组中元素各不相同,且max - min = nums.length - 1,也就是说如果将数组从小到大排序,会得到一个公差为1的数列。

我们首先将数组排序,然后初始的数组中会有不连续的边界,也会有相等的元素。如何处理才能使数列连续,并且保证操作数最小。

我陷入了这个困境,尝试了好几个小时,试图处理各种特殊情况。比如我会先找到最大的连续子序列并且记录边界的差值,然后以它为中心分别从后面、前面获取元素来填充这个边界。并且还要计数相同元素来填充边界,这里填充的时机也会对最小的操作有影响。有时需要先填充,有时则需要最后。总之,并没有一个统一的,明确的算法来满足所有情况。

看了官网的解答,应该使用滑动窗口思想。之前一直有看到这个题型分类,没想到这就是所谓的滑动窗口。

当我遇到困难的时候会有一种执念,不愿意去看题解,想知道沿着自己的思路下去为什么不行,到最后真的有点沮丧。这样我想起了迪杰斯特拉的一个采访。

An interview with Edsger W. Dijkstra

The computer science luminary, in one of his last interviews before his death in 2002, reflects on a programmer’s life.

There’s a curious story behind your “shortest path” algorithm.

In 1956 I did two important things, I got my degree and we had the festive opening of the ARMAC(Automatic Calculator Mathematical Centre, 自动计算器数学中心).

We had to have a demonstration. Now the ARRA(Automatic Relay Calculator Amsterdam, 自动继电器计算器 阿姆斯特丹), a few years earlier, had been so unreliable that the only safe demonstration we dared to give was the generation of random numbers, but for the more reliable ARMAC I could try something more ambitious. For a demonstration for noncomputing people you have to have a problem statement that non-mathematicians can understand; they even have to understand the answer. So I designed a program that would find the shortest route between two cities in the Netherlands, using a somewhat reduced roadmap of the Netherlands, on which I had selected 64 cities (so that in the coding six bits would suffice to identify a city).

What’s the shortest way to travel from Rotterdam to Groningen? It is the algorithm for the shortest path, which I designed in about 20 minutes. One morning I was shopping in Amsterdam with my young fiancée, and tired, we sat down on the café terrace to drink a cup of coffee and I was just thinking about whether I could do this, and I then designed the algorithm for the shortest path. As I said, it was a 20-minute invention. In fact, it was published in 1959, three years later. The publication is still quite nice. One of the reasons that it is so nice was that I designed it without pencil and paper. Without pencil and paper you are almost forced to avoid all avoidable complexities.

Eventually that algorithm became, to my great amazement, one of the cornerstones of my fame. I found it in the early 1960s in a German book on management science—“Das Dijkstra’sche Verfahren” [“Dijkstra’s procedure”].

Suddenly, there was a method named after me. And it jumped again recently because it is extensively used in all travel planners. If, these days, you want to go from here to there and you have a car with a GPS and a screen, it can give you the shortest way.

1956年,迪杰斯特拉与未婚妻在阿姆斯特丹逛商场累了,坐在咖啡厅的露台上喝咖啡,他想到了一个问题"从鹿特丹到格罗宁根最短的旅行路线是什么?",并且在20分钟内构思了最短路径算法。该算法在三年后被发表在一篇三页的论文中,题为 A note on two problems in connexion with graphs。Dijkstra 因其对开发结构化编程语言的基本贡献而获得 1972 年图灵奖,但最短路径算法仍然是他最著名的工作。

During an interview in 2001, Edsger Wybe Dijkstra revealed that he designed the algorithm in just 20 minutes while shopping in Amsterdam with his fiancée in 1956.

He was inspired by the question, "What's the shortest way to travel from Rotterdam to Groningen?"

He designed it without pencil and paper. He even mentioned that the advantage of designing without pencil and paper is that you are almost forced to avoid all avoidable complexities.

The algorithm was published three years later in a three-page article titled "A note on two problems in connexion with graphs".

https://twitter.com/LinuxHandbook/status/1754392486657798198

也许这就是天赋吧。我只是个普通人,不可能解决所有问题,没有什么可沮丧的。要努力站在巨人的肩膀上,知识并不是免费的,需要投入时间。所以没有必要死磕一个问题,快速高效的爬上去,然后当面对新的未知的问题时,再花费精力研究才对。

思考的意义可能就是让自己对困难、问题有了更深的体会,看解答要弄明白问题是如何解决的。

就以这个题为例,困难点在于如何使操作最小。虽然知道长度是固定的,但是并没有意识到如何遍历所有可能的操作方法并取其最小。陷入了具体的、面向过程的、针对案例而设计的算法之中。当我先入为主的认为,应该以最大连续子数组为中心不变,从两端借数填充这个错误的指导思想进行实现时,就注定得不到正确答案。

之所以开始会认为应该保持最大的连续子数组不变,是因为观察了几个测试案例,想当然的认为,既然最后要变成连续数组,那么保持最大的不变,操作数会最小,但其实并非如此。并且,先从后面填还是前面也是没有道理的,都是根据具体的测试案例写的。

也许其它时间,灵光一闪也会想到滑动窗口算法也说不定。如果之前接触过这个概念,那这个题还是挺简单的。

代码

// todo: 过几天自己实现一遍

性能

// todo