1958.检查操作是否合法

目标

给你一个下标从 0 开始的 8 x 8 网格 board ,其中 board[r][c] 表示游戏棋盘上的格子 (r, c) 。棋盘上空格用 '.' 表示,白色格子用 'W' 表示,黑色格子用 'B' 表示。

游戏中每次操作步骤为:选择一个空格子,将它变成你正在执行的颜色(要么白色,要么黑色)。但是,合法 操作必须满足:涂色后这个格子是 好线段的一个端点 (好线段可以是水平的,竖直的或者是对角线)。

好线段 指的是一个包含 三个或者更多格子(包含端点格子)的线段,线段两个端点格子为 同一种颜色 ,且中间剩余格子的颜色都为 另一种颜色 (线段上不能有任何空格子)。你可以在下图找到好线段的例子:

给你两个整数 rMove 和 cMove 以及一个字符 color ,表示你正在执行操作的颜色(白或者黑),如果将格子 (rMove, cMove) 变成颜色 color 后,是一个 合法 操作,那么返回 true ,如果不是合法操作返回 false 。

示例 1:

输入:board = [[".",".",".","B",".",".",".","."],[".",".",".","W",".",".",".","."],[".",".",".","W",".",".",".","."],[".",".",".","W",".",".",".","."],["W","B","B",".","W","W","W","B"],[".",".",".","B",".",".",".","."],[".",".",".","B",".",".",".","."],[".",".",".","W",".",".",".","."]], rMove = 4, cMove = 3, color = "B"
输出:true
解释:'.','W' 和 'B' 分别用颜色蓝色,白色和黑色表示。格子 (rMove, cMove) 用 'X' 标记。
以选中格子为端点的两个好线段在上图中用红色矩形标注出来了。

示例 2:

输入:board = [[".",".",".",".",".",".",".","."],[".","B",".",".","W",".",".","."],[".",".","W",".",".",".",".","."],[".",".",".","W","B",".",".","."],[".",".",".",".",".",".",".","."],[".",".",".",".","B","W",".","."],[".",".",".",".",".",".","W","."],[".",".",".",".",".",".",".","B"]], rMove = 4, cMove = 4, color = "W"
输出:false
解释:虽然选中格子涂色后,棋盘上产生了好线段,但选中格子是作为中间格子,没有产生以选中格子为端点的好线段。

说明:

  • board.length == board[r].length == 8
  • 0 <= rMove, cMove < 8
  • board[rMove][cMove] == '.'
  • color 要么是 'B' 要么是 'W' 。

思路

有一个 8 x 8 网格,网格中 . 表示空格,W 表示白色,B 表示黑色。现在需要给空格涂色,合法的操作指涂色的格子是好线段的端点。好线段长度至少包含三个格子,且两端颜色一致,中间颜色也一致但与两端颜色不同。给定一个操作,判断其是否合法。

按照题意从涂色端点开始依次遍历八个方向上是否存在好线段。

代码

/**
 * @date 2024-07-07 12:21
 */
public class CheckMove1958 {

    public boolean checkMove(char[][] board, int rMove, int cMove, char color) {
        if (board[rMove][cMove] != '.') {
            return false;
        }
        int[][] direction = new int[][]{
                {-1, 0}, {-1, 1}, {0, 1}, {1, 1}, {1, 0}, {1, -1}, {0, -1}, {-1, -1}
        };
        char opposite = (char) (color ^ 'B' ^ 'W');
        for (int[] d : direction) {
            int cnt = 0;
            int r = d[0];
            int c = d[1];
            while (rMove + r >= 0 && rMove + r < 8
                    && cMove + c >= 0 && cMove + c < 8
                    && board[rMove + r][cMove + c] == opposite) {
                r += d[0];
                c += d[1];
                cnt++;
            }
            // 题目要求至少三个格子,所以要求cnt>0
            if (cnt > 0 && rMove + r >= 0 && rMove + r < 8
                    && cMove + c >= 0 && cMove + c < 8
                    && board[rMove + r][cMove + c] == color) {
                return true;
            }
        }
        return false;
    }
}

性能

3101.交替子数组计数

目标

给你一个 二进制数组 nums 。

如果一个 子数组 中 不存在 两个 相邻 元素的值 相同 的情况,我们称这样的子数组为 交替子数组 。

返回数组 nums 中交替子数组的数量。

示例 1:

输入: nums = [0,1,1,1]
输出: 5
解释:
以下子数组是交替子数组:[0] 、[1] 、[1] 、[1] 以及 [0,1] 。

示例 2:

输入: nums = [1,0,1,0]
输出: 10
解释:
数组的每个子数组都是交替子数组。可以统计在内的子数组共有 10 个。

说明:

  • 1 <= nums.length <= 10^5
  • nums[i] 不是 0 就是 1 。

思路

返回二进制数组中交替子数组的数量。

记录相邻元素相同的下标,计算子数组的数量。拥有n个元素的数组,其子数组数量为 n * (n + 1) / 2

官网题解是另一种思路:

  • 如果相邻的元素 nums[i-1] ≠ nums[i],那么可以将 nums[i] 加到所有以 i-1 为右端点的子数组末尾,再加上nums[i]自身,即 以 i 为右端点的交替子数组数量 = 以 i-1 为右端点的交替子数组数量 + 1
  • 如果相邻元素相等,则记录以i为右端点的交替子数组数量为1。

其实本质都是一样的,一个是使用公式求解,一个是通过循环累加。

代码

/**
 * @date 2024-07-06 20:52
 */
public class CountAlternatingSubarrays3101 {
    /**
     * 官网题解
     */
    public long countAlternatingSubarrays_v1(int[] nums) {
        long res = 0, cur = 0;
        int pre = -1;
        for (int a : nums) {
            cur = (pre != a) ? cur + 1 : 1;
            pre = a;
            res += cur;
        }
        return res;
    }

    public long countAlternatingSubarrays(int[] nums) {
        int n = nums.length;
        long res = 0;
        int s = 0;
        for (int i = 1; i < n; i++) {
            if (nums[i] == nums[i - 1]) {
                // 这里个数的计算是从 s ~ i-1的元素个数 i - 1 - s + 1
                int k = i - s;
                res += k * (k + 1) / 2;
                s = i;
            }
        }
        // 注意处理结尾的情况
        if (s != n - 1) {
            // 这里计算的是 s ~ n-1 的元素个数 n - 1 - s + 1
            int k = n - s;
            // 这里要防止溢出,使用1L
            res += k * (k + 1L) / 2;
        } else {
            res++;
        }
        return res;
    }
}

性能

3033.修改矩阵

目标

给你一个下标从 0 开始、大小为 m x n 的整数矩阵 matrix ,新建一个下标从 0 开始、名为 answer 的矩阵。使 answer 与 matrix 相等,接着将其中每个值为 -1 的元素替换为所在列的 最大 元素。

返回矩阵 answer 。

示例 1:

输入:matrix = [[1,2,-1],[4,-1,6],[7,8,9]]
输出:[[1,2,9],[4,8,6],[7,8,9]]
解释:上图显示了发生替换的元素(蓝色区域)。
- 将单元格 [1][1] 中的值替换为列 1 中的最大值 8 。
- 将单元格 [0][2] 中的值替换为列 2 中的最大值 9 。

示例 2:

输入:matrix = [[3,-1],[5,2]]
输出:[[3,2],[5,2]]
解释:上图显示了发生替换的元素(蓝色区域)。

说明:

  • m == matrix.length
  • n == matrix[i].length
  • 2 <= m, n <= 50
  • -1 <= matrix[i][j] <= 100
  • 测试用例中生成的输入满足每列至少包含一个非负整数。

思路

使用矩阵各列的最大值替换该列中值为-1的元素。

先求出各列的最大值,然后替换。

代码

/**
 * @date 2024-07-05 0:26
 */
public class ModifiedMatrix3033 {

    /**
     * 优化到一个循环中,使用局部遍历保存当前列的最大值,
     * 没必要使用数组保存所有列的最大值然后再处理
     */
    public int[][] modifiedMatrix_v1(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        for (int i = 0; i < n; i++) {
            int max = 0;
            for (int j = 0; j < m; j++) {
                max = Math.max(max, matrix[j][i]);
            }
            for (int j = 0; j < m; j++) {
                if (matrix[j][i] == -1) {
                    matrix[j][i] = max;
                }
            }
        }
        return matrix;
    }

    public int[][] modifiedMatrix(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        int[] max = new int[n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                max[i] = Math.max(max[i], matrix[j][i]);
            }
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (matrix[j][i] == -1) {
                    matrix[j][i] = max[i];
                }
            }
        }
        return matrix;
    }
}

性能

3086.拾起K个1需要的最少行动次数

目标

给你一个下标从 0 开始的二进制数组 nums,其长度为 n ;另给你一个 正整数 k 以及一个 非负整数 maxChanges 。

Alice 在玩一个游戏,游戏的目标是让 Alice 使用 最少 数量的 行动 次数从 nums 中拾起 k 个 1 。游戏开始时,Alice 可以选择数组 [0, n - 1] 范围内的任何索引 aliceIndex 站立。如果 nums[aliceIndex] == 1 ,Alice 会拾起一个 1 ,并且 nums[aliceIndex] 变成0(这 不算 作一次行动)。之后,Alice 可以执行 任意数量 的 行动(包括零次),在每次行动中 Alice 必须 恰好 执行以下动作之一:

  • 选择任意一个下标 j != aliceIndex 且满足 nums[j] == 0 ,然后将 nums[j] 设置为 1 。这个动作最多可以执行 maxChanges 次。
  • 选择任意两个相邻的下标 x 和 y(|x - y| == 1)且满足 nums[x] == 1, nums[y] == 0 ,然后交换它们的值(将 nums[y] = 1 和 nums[x] = 0)。如果 y == aliceIndex,在这次行动后 Alice 拾起一个 1 ,并且 nums[y] 变成 0 。

返回 Alice 拾起 恰好 k 个 1 所需的 最少 行动次数。

示例 1:

输入:nums = [1,1,0,0,0,1,1,0,0,1], k = 3, maxChanges = 1
输出:3
解释:如果游戏开始时 Alice 在 aliceIndex == 1 的位置上,按照以下步骤执行每个动作,他可以利用 3 次行动拾取 3 个 1 :

游戏开始时 Alice 拾取了一个 1 ,nums[1] 变成了 0。此时 nums 变为 [1,0,0,0,0,1,1,0,0,1] 。
选择 j == 2 并执行第一种类型的动作。nums 变为 [1,0,1,0,0,1,1,0,0,1]
选择 x == 2 和 y == 1 ,并执行第二种类型的动作。nums 变为 [1,1,0,0,0,1,1,0,0,1] 。由于 y == aliceIndex,Alice 拾取了一个 1 ,nums 变为  [1,0,0,0,0,1,1,0,0,1] 。
选择 x == 0 和 y == 1 ,并执行第二种类型的动作。nums 变为 [0,1,0,0,0,1,1,0,0,1] 。由于 y == aliceIndex,Alice 拾取了一个 1 ,nums 变为  [0,0,0,0,0,1,1,0,0,1] 。
请注意,Alice 也可能执行其他的 3 次行动序列达成拾取 3 个 1 。

示例 2:

输入:nums = [0,0,0,0], k = 2, maxChanges = 3
输出:4
解释:如果游戏开始时 Alice 在 aliceIndex == 0 的位置上,按照以下步骤执行每个动作,他可以利用 4 次行动拾取 2 个 1 :

选择 j == 1 并执行第一种类型的动作。nums 变为 [0,1,0,0] 。
选择 x == 1 和 y == 0 ,并执行第二种类型的动作。nums 变为 [1,0,0,0] 。由于 y == aliceIndex,Alice 拾起了一个 1 ,nums 变为 [0,0,0,0] 。
再次选择 j == 1 并执行第一种类型的动作。nums 变为 [0,1,0,0] 。
再次选择 x == 1 和 y == 0 ,并执行第二种类型的动作。nums 变为 [1,0,0,0] 。由于y == aliceIndex,Alice 拾起了一个 1 ,nums 变为 [0,0,0,0] 。

说明:

  • 2 <= n <= 10^5
  • 0 <= nums[i] <= 1
  • 1 <= k <= 10^5
  • 0 <= maxChanges <= 10^5
  • maxChanges + sum(nums) >= k

思路

有一个二进制(元素不是0就是1)数组nums,选择一个固定的位置aliceIndex,如果该位置元素值为1,则可以拾起并将元素置0。接下来可以采取行动:

  1. 任选一个不等于aliceIndex且值为0的元素置1
  2. 将任意相邻且元素值不等的元素交换,如果其中一个位置是aliceIndex,且交换后的值为1,则可以拾起这个1并将元素置0

问恰好拾起k个1所需最小行动次数。

很明显行动1要选与aliceIndex相邻的,这样才可以用行动2将1拾起。

我们首先面对的问题是aliceIndex怎么选,要拾取1就需要将1都通过行动2移动到aliceIndex周围,如果拾取一个1的行动次数大于2的话就需要考虑使用行动1直接在aliceIndex周围设置1再拾取。

// todo

代码

性能

3099.哈沙德数

目标

如果一个整数能够被其各个数位上的数字之和整除,则称之为 哈沙德数(Harshad number)。给你一个整数 x 。如果 x 是 哈沙德数 ,则返回 x 各个数位上的数字之和,否则,返回 -1 。

示例 1:

输入: x = 18
输出: 9
解释: x 各个数位上的数字之和为 9 。18 能被 9 整除。因此 18 是哈沙德数,答案是 9 。

示例 2:

输入: x = 23
输出: -1
解释: x 各个数位上的数字之和为 5 。23 不能被 5 整除。因此 23 不是哈沙德数,答案是 -1 。

说明:

  • 1 <= x <= 100

思路

判断给定的整数x的各位数字之和能否整除x,如果可以返回各位数字之和,否则返回-1。

代码

/**
 * @date 2024-07-03 0:40
 */
public class SumOfTheDigitsOfHarshadNumber3099 {

    public int sumOfTheDigitsOfHarshadNumber(int x) {
        int sum = 0;
        // 容易出错的点是直接对x进行修改,后面求余的时候就错了
        int digit = x;
        while (digit > 0) {
            sum += digit % 10;
            digit /= 10;
        }
        return x % sum == 0 ? sum : -1;
    }
}

性能

3115.质数的最大距离

目标

给你一个整数数组 nums。

返回两个(不一定不同的)质数在 nums 中 下标 的 最大距离。

示例 1:

输入: nums = [4,2,9,5,3]
输出: 3
解释: nums[1]、nums[3] 和 nums[4] 是质数。因此答案是 |4 - 1| = 3。

示例 2:

输入: nums = [4,8,2,8]
输出: 0
解释: nums[2] 是质数。因为只有一个质数,所以答案是 |2 - 2| = 0。

说明:

  • 1 <= nums.length <= 3 * 10^5
  • 1 <= nums[i] <= 100
  • 输入保证 nums 中至少有一个质数。

思路

找出数组中质数的最远距离(下标之差)。

知识点:

  • 自然数:非负整数
  • 质数:只能被1和它本身整除的大于1的自然数
  • 合数:不是质数的大于1的自然数

如果 n 是一个合数,那么它可以分解为两个自然数 a、b 的乘积,即 n = a * b。设 a ≤ b ,如果 a ≥ √n ,那么 a * b ≥ n。 也就是说 a、b 要么同时等于 √n,要么一个大于一个小于 √n不可能同时大于√n。于是判断一个数是否是质数,只需判断 n 是否能够整除 1 ~ √n

除了2的偶数都不是质数,因此自增的步长可以设为2。

更进一步分析,所有质数除了2和3外,都形如 6k - 16k + 1。考虑 n % 6

  • 余数为0,首先6不是质数,能被6整除的数也不是质数
  • 余数为2、4,表明能够被2整除,不是质数
  • 余数为3,表明能被3整除,不是质数
  • 余数为5,6k - 1
  • 余数为1,6k + 1

从5开始,步长可以设为6。

代码

/**
 * @date 2024-07-02 9:13
 */
public class MaximumPrimeDifference3115 {

    public int maximumPrimeDifference_v2(int[] nums) {
        int i = 0, j = nums.length - 1;
        while (!isPrimeNumber(nums[i])) {
            i++;
        }
        while (!isPrimeNumber(nums[j])) {
            j--;
        }
        return j - i;
    }

    public boolean isPrimeNumber(int num) {
        if (num == 1) {
            return false;
        }
        if (num == 2) {
            return true;
        }
        if (num % 2 == 0) {
            return false;
        }
        for (int i = 3; i * i <= num; i += 2) {
            if (num % i == 0) {
                return false;
            }
        }
        return true;
    }

    public static boolean isPrimeNumber_v1(int num) {
        if (num <= 1) {
            return false;
        }
        if (num <= 3) {
            return true; 
        }
        if (num % 2 == 0 || num % 3 == 0) {
            return false; 
        }
        for (int i = 5; i * i <= num; i += 6) {
            // i = 6k - 1, i + 2 = 6k + 1
            if (num % i == 0 || num % (i + 2) == 0) {
                return false;
            }
        }
        return true;
    }
}

性能

494.目标和

目标

给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

说明:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000

思路

有一个数组,可以在数组元素前加上正负号来组成表达式,问表达式等于target的数目。

如果当前元素为正则累加,否则相减,递归直到所有元素都已列入表达式,如果累加结果等于target则返回1,否则返回0。

//todo 改为递推,或记忆化搜索

代码

/**
 * @date 2024-06-30 20:07
 */
public class FindTargetSumWays494 {
    public int findTargetSumWays(int[] nums, int target) {
        return dfs(nums, 1, nums[0], target) + dfs(nums, 1, -nums[0], target);
    }

    public int dfs(int[] nums, int i, int res, int target) {
        if (i == nums.length) {
            return res - target == 0 ? 1 : 0;
        }
        return dfs(nums, i + 1, res + nums[i], target) + dfs(nums, i + 1, res - nums[i], target);
    }

}

性能

2710.移除字符串中的尾随零

目标

给你一个用字符串表示的正整数 num ,请你以字符串形式返回不含尾随零的整数 num 。

示例 1:

输入:num = "51230100"
输出:"512301"
解释:整数 "51230100" 有 2 个尾随零,移除并返回整数 "512301" 。

示例 2:

输入:num = "123"
输出:"123"
解释:整数 "123" 不含尾随零,返回整数 "123" 。

说明:

  • 1 <= num.length <= 1000
  • num 仅由数字 0 到 9 组成
  • num 不含前导零

思路

去掉字符串末尾的0。

代码

/**
 * @date 2024-06-29 21:45
 */
public class RemoveTrailingZeros2710 {

    public String removeTrailingZeros(String num) {
        int n = num.length() - 1;
        while (n >= 0 && num.charAt(n) == '0') {
            n--;
        }
        return num.substring(0, n + 1);
    }
}

性能