2266.统计打字方案数

目标

Alice 在给 Bob 用手机打字。数字到字母的 对应 如下图所示。

为了 打出 一个字母,Alice 需要 按 对应字母 i 次,i 是该字母在这个按键上所处的位置。

  • 比方说,为了按出字母 's' ,Alice 需要按 '7' 四次。类似的, Alice 需要按 '5' 两次得到字母 'k' 。
  • 注意,数字 '0' 和 '1' 不映射到任何字母,所以 Alice 不 使用它们。

但是,由于传输的错误,Bob 没有收到 Alice 打字的字母信息,反而收到了 按键的字符串信息 。

  • 比方说,Alice 发出的信息为 "bob" ,Bob 将收到字符串 "2266622" 。

给你一个字符串 pressedKeys ,表示 Bob 收到的字符串,请你返回 Alice 总共可能发出多少种文字信息 。

由于答案可能很大,将它对 10^9 + 7 取余 后返回。

示例 1:

输入:pressedKeys = "22233"
输出:8
解释:
Alice 可能发出的文字信息包括:
"aaadd", "abdd", "badd", "cdd", "aaae", "abe", "bae" 和 "ce" 。
由于总共有 8 种可能的信息,所以我们返回 8 。

示例 2:

输入:pressedKeys = "222222222222222222222222222222222222"
输出:82876089
解释:
总共有 2082876103 种 Alice 可能发出的文字信息。
由于我们需要将答案对 109 + 7 取余,所以我们返回 2082876103 % (109 + 7) = 82876089 。

说明:

  • 1 <= pressedKeys.length <= 10^5
  • pressedKeys 只包含数字 '2' 到 '9' 。

思路

Alice 给 Bob 发短信,由于种种原因,Bob 接收到的是 Alice 的按键的数字字符串,求这些按键信息能够表示多少文字信息。由于一个数字按键可以表示多个字母,那么连续的相同数字就产生了多种可能的文字信息。2 3 4 5 6 8 可以表示 3 个字母,7 9 可以表示 4 个字母。

问题变成求解相同的连续数字可以表示的字母组合个数,或者将 n 个球放入盒子,每个盒子最多放 k 个球,至少放 1 个球,有多少种放法。

定义 dp[i] 表示将 i 个球放入盒子的方法,考虑最后一个盒子我们可以放 1 ~ k 个球,那么当 k = 3k = 4 时:

  • dp3[i] = ((dp3[i - 1] + dp3[i - 2]) % MOD + dp3[i - 3] % MOD) % MOD;
  • dp4[i] = ((dp4[i - 1] + dp4[i - 2]) % MOD + (dp4[i - 3] + dp4[i - 4]) % MOD) % MOD;

遍历字符串,找到连续的字符个数,使用乘法原理计算即可。

代码


/**
 * @date 2025-01-19 2:21
 */
public class CountTexts2266 {

    static int[] dp3 = new int[100001];
    static int[] dp4 = new int[100001];
    static int MOD = 1000000007;
    static Map<Character, int[]> map = new HashMap<>();

    static {
        dp3[1] = 1;
        dp3[2] = 2;
        dp3[3] = 4;
        dp3[4] = 7;
        dp4[1] = 1;
        dp4[2] = 2;
        dp4[3] = 4;
        dp4[4] = 8;
        for (int i = 5; i < 100001; i++) {
            dp3[i] = ((dp3[i - 1] + dp3[i - 2]) % MOD + dp3[i - 3] % MOD) % MOD;
            dp4[i] = ((dp4[i - 1] + dp4[i - 2]) % MOD + (dp4[i - 3] + dp4[i - 4]) % MOD) % MOD;
        }
        map.put('2', dp3);
        map.put('3', dp3);
        map.put('4', dp3);
        map.put('5', dp3);
        map.put('6', dp3);
        map.put('8', dp3);
        map.put('7', dp4);
        map.put('9', dp4);
    }

    public int countTexts(String pressedKeys) {
        char[] chars = pressedKeys.toCharArray();
        char prev = chars[0];
        int cnt = 1;
        long res = 1;
        for (int i = 1; i < chars.length; i++) {
            if (prev == chars[i]) {
                cnt++;
            } else {
                res = res * map.get(prev)[cnt] % MOD;
                prev = chars[i];
                cnt = 1;
            }
        }
        if (cnt > 1){
            res = res * map.get(prev)[cnt] % MOD;
        }
        return (int) res;
    }

}

性能

3287.求出数组中最大序列值

目标

给你一个整数数组 nums 和一个 正 整数 k 。

定义长度为 2 * x 的序列 seq 的 值 为:

  • (seq[0] OR seq[1] OR ... OR seq[x - 1]) XOR (seq[x] OR seq[x + 1] OR ... OR seq[2 * x - 1]).

请你求出 nums 中所有长度为 2 * k 的 子序列 的 最大值 。

示例 1:

输入:nums = [2,6,7], k = 1
输出:5
解释:
子序列 [2, 7] 的值最大,为 2 XOR 7 = 5 。

示例 2:

输入:nums = [4,2,5,6,7], k = 2
输出:2
解释:
子序列 [4, 5, 6, 7] 的值最大,为 (4 OR 5) XOR (6 OR 7) = 2 。

说明:

  • 2 <= nums.length <= 400
  • 1 <= nums[i] < 27
  • 1 <= k <= nums.length / 2

思路

// todo

代码

性能

3097.或值至少为K的最短子数组II

目标

给你一个 非负 整数数组 nums 和一个整数 k 。

如果一个数组中所有元素的按位或运算 OR 的值 至少 为 k ,那么我们称这个数组是 特别的 。

请你返回 nums 中 最短特别非空 子数组 的长度,如果特别子数组不存在,那么返回 -1 。

示例 1:

输入:nums = [1,2,3], k = 2
输出:1
解释:
子数组 [3] 的按位 OR 值为 3 ,所以我们返回 1 。

示例 2:

输入:nums = [2,1,8], k = 10
输出:3
解释:
子数组 [2,1,8] 的按位 OR 值为 11 ,所以我们返回 3 。

示例 3:

输入:nums = [1,2], k = 0
输出:1
解释:
子数组 [1] 的按位 OR 值为 1 ,所以我们返回 1 。

说明:

  • 1 <= nums.length <= 2 * 10^5
  • 0 <= nums[i] <= 10^9
  • 0 <= k <= 10^9

思路

求数组 nums 的最短特别子数组长度,特别子数组的所有元素按位与的结果大于等于 k。

3095.或值至少K的最短子数组I 相比数据范围变大了,O(n^2) 的解法会超时。

记录每一位的出现次数,使用滑动窗口,枚举右收缩左。由于 按位或 没有逆运算,我们可以反向重新计算 按位与。

代码


/**
 * @date 2025-01-17 8:40
 */
public class MinimumSubarrayLength3097 {

    public int minimumSubarrayLength_v2(int[] nums, int k) {
        int res = Integer.MAX_VALUE;
        int right = 0;
        int n = nums.length;
        int or = 0;
        while (right < n) {
            do {
                or |= nums[right++];
            } while (right < n && or < k);
            if (or >= k) {
                int left = right - 1;
                int tmp = 0;
                while (left >= 0) {
                    tmp |= nums[left--];
                    if (tmp >= k) {
                        left++;
                        break;
                    } else {
                        or = tmp;
                    }
                }
                res = Math.min(res, right - left);
            } else {
                break;
            }
        }
        return res == Integer.MAX_VALUE ? -1 : res;
    }

}

性能

3095.或值至少K的最短子数组I

目标

给你一个 非负 整数数组 nums 和一个整数 k 。

如果一个数组中所有元素的按位或运算 OR 的值 至少 为 k ,那么我们称这个数组是 特别的 。

请你返回 nums 中 最短特别非空 子数组 的长度,如果特别子数组不存在,那么返回 -1 。

示例 1:

输入:nums = [1,2,3], k = 2
输出:1
解释:
子数组 [3] 的按位 OR 值为 3 ,所以我们返回 1 。
注意,[2] 也是一个特别子数组。

示例 2:

输入:nums = [2,1,8], k = 10
输出:3
解释:
子数组 [2,1,8] 的按位 OR 值为 11 ,所以我们返回 3 。

示例 3:

输入:nums = [1,2], k = 0
输出:1
解释:
子数组 [1] 的按位 OR 值为 1 ,所以我们返回 1 。

说明:

  • 1 <= nums.length <= 50
  • 0 <= nums[i] <= 50
  • 0 <= k < 64

思路

求数组 nums 的最短特别子数组长度,特别子数组的所有元素按位与的结果大于等于 k。

枚举子数组,暴力求解每个子数组的或值。

代码


/**
 * @date 2025-01-16 22:22
 */
public class MinimumSubarrayLength3095 {
    /**
     * 枚举起点 O(n^2)
     */
    public int minimumSubarrayLength_v1(int[] nums, int k) {
        int n = nums.length;
        int res = Integer.MAX_VALUE;
        for (int i = 0; i < n; i++) {
            int or = 0;
            for (int j = i; j < n; j++) {
                or |= nums[j];
                if (or >= k) {
                    res = Math.min(res, j - i + 1);
                    break;
                }
            }
        }
        return res == Integer.MAX_VALUE ? -1 : res;
    }

    /**
     * 枚举终点 O(n^3)
     */
    public int minimumSubarrayLength(int[] nums, int k) {
        int n = nums.length;
        int res = Integer.MAX_VALUE;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j <= i; j++) {
                int or = 0;
                for (int x = j; x <= i; x++) {
                    or |= nums[x];
                }
                if (or >= k) {
                    res = Math.min(res, i - j + 1);
                }
            }
        }
        return res == Integer.MAX_VALUE ? -1 : res;
    }
}

性能

3066.超过阈值的最少操作数II

目标

给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。

一次操作中,你将执行:

  • 选择 nums 中最小的两个整数 x 和 y 。
  • 将 x 和 y 从 nums 中删除。
  • 将 min(x, y) * 2 + max(x, y) 添加到数组中的任意位置。

注意,只有当 nums 至少包含两个元素时,你才可以执行以上操作。

你需要使数组中的所有元素都大于或等于 k ,请你返回需要的 最少 操作次数。

示例 1:

输入:nums = [2,11,10,1,3], k = 10
输出:2
解释:第一次操作中,我们删除元素 1 和 2 ,然后添加 1 * 2 + 2 到 nums 中,nums 变为 [4, 11, 10, 3] 。
第二次操作中,我们删除元素 3 和 4 ,然后添加 3 * 2 + 4 到 nums 中,nums 变为 [10, 11, 10] 。
此时,数组中的所有元素都大于等于 10 ,所以我们停止操作。
使数组中所有元素都大于等于 10 需要的最少操作次数为 2 。

示例 2:

输入:nums = [1,1,2,4,9], k = 20
输出:4
解释:第一次操作后,nums 变为 [2, 4, 9, 3] 。
第二次操作后,nums 变为 [7, 4, 9] 。
第三次操作后,nums 变为 [15, 9] 。
第四次操作后,nums 变为 [33] 。
此时,数组中的所有元素都大于等于 20 ,所以我们停止操作。
使数组中所有元素都大于等于 20 需要的最少操作次数为 4 。

说明:

  • 2 <= nums.length <= 2 * 10^5
  • 1 <= nums[i] <= 10^9
  • 1 <= k <= 10^9
  • 输入保证答案一定存在,也就是说一定存在一个操作序列使数组中所有元素都大于等于 k 。

思路

求使数组 nums 中所有元素均大于等于 k 的操作次数。每次操作可以将数组中最小的两个元素删除,并将 min(x, y) * 2 + max(x, y) 加入数组。

使用最小堆模拟即可

代码


/**
 * @date 2025-01-14 8:51
 */
public class MinOperations3066 {

    public int minOperations(int[] nums, int k) {
        PriorityQueue<Long> q = new PriorityQueue<>();
        for (int num : nums) {
            q.offer((long) num);
        }
        int res = 0;
        while (q.size() >= 2) {
            Long a = q.poll();
            Long b = q.poll();
            if (a >= k) {
                break;
            }
            q.offer(a * 2L + b);
            res++;
        }
        return res;
    }
}

性能

3065.超过阈值的最少操作数I

目标

给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。

一次操作中,你可以删除 nums 中的最小元素。

你需要使数组中的所有元素都大于或等于 k ,请你返回需要的 最少 操作次数。

示例 1:

输入:nums = [2,11,10,1,3], k = 10
输出:3
解释:第一次操作后,nums 变为 [2, 11, 10, 3] 。
第二次操作后,nums 变为 [11, 10, 3] 。
第三次操作后,nums 变为 [11, 10] 。
此时,数组中的所有元素都大于等于 10 ,所以我们停止操作。
使数组中所有元素都大于等于 10 需要的最少操作次数为 3 。

示例 2:

输入:nums = [1,1,2,4,9], k = 1
输出:0
解释:数组中的所有元素都大于等于 1 ,所以不需要对 nums 做任何操作。

示例 3:

输入:nums = [1,1,2,4,9], k = 9
输出:4
解释:nums 中只有一个元素大于等于 9 ,所以需要执行 4 次操作。

说明:

  • 1 <= nums.length <= 50
  • 1 <= nums[i] <= 10^9
  • 1 <= k <= 10^9
  • 输入保证至少有一个满足 nums[i] >= k 的下标 i 存在。

思路

求数组中小于 k 的元素个数。

代码


/**
 * @date 2025-01-14 8:41
 */
public class MinOperations3065 {

    public int minOperations(int[] nums, int k) {
        int res = 0;
        for (int num : nums) {
            if (num < k){
                res++;
            }
        }
        return res;
    }
}

性能

2270.分割数组的方案数

目标

给你一个下标从 0 开始长度为 n 的整数数组 nums 。

如果以下描述为真,那么 nums 在下标 i 处有一个 合法的分割 :

  • 前 i + 1 个元素的和 大于等于 剩下的 n - i - 1 个元素的和。
  • 下标 i 的右边 至少有一个 元素,也就是说下标 i 满足 0 <= i < n - 1 。

请你返回 nums 中的 合法分割 方案数。

示例 1:

输入:nums = [10,4,-8,7]
输出:2
解释:
总共有 3 种不同的方案可以将 nums 分割成两个非空的部分:
- 在下标 0 处分割 nums 。那么第一部分为 [10] ,和为 10 。第二部分为 [4,-8,7] ,和为 3 。因为 10 >= 3 ,所以 i = 0 是一个合法的分割。
- 在下标 1 处分割 nums 。那么第一部分为 [10,4] ,和为 14 。第二部分为 [-8,7] ,和为 -1 。因为 14 >= -1 ,所以 i = 1 是一个合法的分割。
- 在下标 2 处分割 nums 。那么第一部分为 [10,4,-8] ,和为 6 。第二部分为 [7] ,和为 7 。因为 6 < 7 ,所以 i = 2 不是一个合法的分割。
所以 nums 中总共合法分割方案受为 2 。

示例 2:

输入:nums = [2,3,1,0]
输出:2
解释:
总共有 2 种 nums 的合法分割:
- 在下标 1 处分割 nums 。那么第一部分为 [2,3] ,和为 5 。第二部分为 [1,0] ,和为 1 。因为 5 >= 1 ,所以 i = 1 是一个合法的分割。
- 在下标 2 处分割 nums 。那么第一部分为 [2,3,1] ,和为 6 。第二部分为 [0] ,和为 0 。因为 6 >= 0 ,所以 i = 2 是一个合法的分割。

说明:

  • 2 <= nums.length <= 10^5
  • -10^5 <= nums[i] <= 10^5

思路

求数组的合法分割点个数,下标 i 是合法分割点的条件是 前 i + 1 个元素和大于剩余元素和,且至少要有一个元素。

直接的想法是计算前缀和,然后按照题意计算。

实际实现时发现只用到了 所有元素的和 sum 以及区间 [0, i] 的和 tmp,无需存储前缀,直接在遍历的时候计算就可以。

代码


/**
 * @date 2025-01-13 8:41
 */
public class WaysToSplitArray2270 {

    public int waysToSplitArray(int[] nums) {
        long sum = 0;
        for (int num : nums) {
            sum += num;
        }
        int res = 0;
        long tmp = 0;
        for (int i = 0; i < nums.length - 1; i++) {
            tmp += nums[i];
            if (2 * tmp >= sum) {
                res++;
            }
        }
        return res;
    }

}

性能

2275.按位与结果大于零的最长组合

目标

对数组 nums 执行 按位与 相当于对数组 nums 中的所有整数执行 按位与 。

  • 例如,对 nums = [1, 5, 3] 来说,按位与等于 1 & 5 & 3 = 1 。
  • 同样,对 nums = [7] 而言,按位与等于 7 。

给你一个正整数数组 candidates 。计算 candidates 中的数字每种组合下 按位与 的结果。

返回按位与结果大于 0 的 最长 组合的长度。

示例 1:

输入:candidates = [16,17,71,62,12,24,14]
输出:4
解释:组合 [16,17,62,24] 的按位与结果是 16 & 17 & 62 & 24 = 16 > 0 。
组合长度是 4 。
可以证明不存在按位与结果大于 0 且长度大于 4 的组合。
注意,符合长度最大的组合可能不止一种。
例如,组合 [62,12,24,14] 的按位与结果是 62 & 12 & 24 & 14 = 8 > 0 。

示例 2:

输入:candidates = [8,8]
输出:2
解释:最长组合是 [8,8] ,按位与结果 8 & 8 = 8 > 0 。
组合长度是 2 ,所以返回 2 。

说明:

  • 1 <= candidates.length <= 10^5
  • 1 <= candidates[i] <= 10^7

思路

求数组 nums 符合条件(子序列按位与的结果大于 0)的子序列的最大长度。

如果使用 dfs 考虑选或者不选,枚举所有子序列肯定超时。

看了题解,说是统计所有数字相同 bit 位上 1 的出现次数,取其最大值。

代码


/**
 * @date 2025-01-12 21:50
 */
public class LargestCombination2275 {

    public int largestCombination(int[] candidates) {
        int[] cnt = new int[24];
        for (int candidate : candidates) {
            for (int i = 0; i < 24; i++) {
                cnt[i] += (candidate >> i) & 1;
            }
        }
        int res = 0;
        for (int i : cnt) {
            res = Math.max(i, res);
        }
        return res;
    }

}

性能

3270.求出数字答案

目标

给你三个 正 整数 num1 ,num2 和 num3 。

数字 num1 ,num2 和 num3 的数字答案 key 是一个四位数,定义如下:

  • 一开始,如果有数字 少于 四位数,给它补 前导 0 。
  • 答案 key 的第 i 个数位(1 <= i <= 4)为 num1 ,num2 和 num3 第 i 个数位中的 最小 值。

请你返回三个数字 没有 前导 0 的数字答案。

示例 1:

输入:num1 = 1, num2 = 10, num3 = 1000
输出:0
解释:
补前导 0 后,num1 变为 "0001" ,num2 变为 "0010" ,num3 保持不变,为 "1000" 。
数字答案 key 的第 1 个数位为 min(0, 0, 1) 。
数字答案 key 的第 2 个数位为 min(0, 0, 0) 。
数字答案 key 的第 3 个数位为 min(0, 1, 0) 。
数字答案 key 的第 4 个数位为 min(1, 0, 0) 。
所以数字答案为 "0000" ,也就是 0 。

示例 2:

输入: num1 = 987, num2 = 879, num3 = 798
输出:777

示例 3:

输入:num1 = 1, num2 = 2, num3 = 3
输出:1

说明:

  • 1 <= num1, num2, num3 <= 9999

思路

有三个小于等于 9999 的正整数,求四位数字 key,从左向右第 i 位是这三个数字对应数位(十进制)上数字的最小值。

根据题意模拟即可。

代码


/**
 * @date 2025-01-11 16:55
 */
public class GenerateKey3270 {
    public int generateKey(int num1, int num2, int num3) {
        int res = 0;
        int base = 1000;
        for (int i = 0; i < 4; i++) {
            int a1 = num1 / base;
            int a2 = num2 / base;
            int a3 = num3 / base;
            res += Math.min(a1, Math.min(a2, a3)) * base;
            num1 %= base;
            num2 %= base;
            num3 %= base;
            base /= 10;
        }
        return res;
    }
}

性能

3298.统计重新排列后包含另一个字符串的子字符串数目II

目标

给你两个字符串 word1 和 word2 。

如果一个字符串 x 重新排列后,word2 是重排字符串的 前缀,那么我们称字符串 x 是 合法的 。

请你返回 word1 中 合法 子字符串 的数目。

注意 ,这个问题中的内存限制比其他题目要 小 ,所以你 必须 实现一个线性复杂度的解法。

示例 1:

输入:word1 = "bcca", word2 = "abc"
输出:1
解释:
唯一合法的子字符串是 "bcca" ,可以重新排列得到 "abcc" ,"abc" 是它的前缀。

示例 2:

输入:word1 = "abcabc", word2 = "abc"
输出:10
解释:
除了长度为 1 和 2 的所有子字符串都是合法的。

示例 3:

输入:word1 = "abcabc", word2 = "aaabc"
输出:0

说明:

  • 1 <= word1.length <= 10^6
  • 1 <= word2.length <= 10^4
  • word1 和 word2 都只包含小写英文字母。

思路

参考 3297.统计重新排列后包含另一个字符串的子字符串数目I,本题内存限制小,必须使用线性复杂度的解法。

代码


/**
 * @date 2025-01-09 14:28
 */
public class ValidSubstringCount3297 {

    public long validSubstringCount_v1(String word1, String word2) {
        int[] cnt1 = new int[26];
        int[] cnt2 = new int[26];
        char[] chars1 = word1.toCharArray();
        char[] chars2 = word2.toCharArray();
        for (char c : chars1) {
            cnt1[c - 'a']++;
        }
        for (char c : chars2) {
            cnt2[c - 'a']++;
        }
        for (int i = 0; i < 26; i++) {
            if (cnt1[i] < cnt2[i]) {
                return 0;
            }
        }
        int n = word1.length();
        int r = n - 1;
        while (--cnt1[chars1[r] - 'a'] >= cnt2[chars1[r] - 'a']) {
            r--;
        }
        long res = n - r;
        cnt1[chars1[r++] - 'a']++;
        for (int i = 0; i < n - word2.length(); i++) {
            int c = chars1[i] - 'a';
            cnt1[c]--;
            while (r < n && cnt1[c] < cnt2[c]) {
                cnt1[chars1[r++] - 'a']++;
            }
            if (cnt1[c] >= cnt2[c]) {
                res += n - r + 1;
            } else {
                break;
            }
        }
        return res;
    }

}

性能