目标
给你一个由 n 个整数组成的数组 nums,以及两个整数 k 和 x。
数组的 x-sum 计算按照以下步骤进行:
- 统计数组中所有元素的出现次数。
- 仅保留出现次数最多的前 x 个元素的每次出现。如果两个元素的出现次数相同,则数值 较大 的元素被认为出现次数更多。
- 计算结果数组的和。
注意,如果数组中的不同元素少于 x 个,则其 x-sum 是数组的元素总和。
返回一个长度为 n - k + 1 的整数数组 answer,其中 answer[i] 是 子数组 nums[i..i + k - 1] 的 x-sum。
子数组 是数组内的一个连续 非空 的元素序列。
示例 1:
输入:nums = [1,1,2,2,3,4,2,3], k = 6, x = 2
输出:[6,10,12]
解释:
对于子数组 [1, 1, 2, 2, 3, 4],只保留元素 1 和 2。因此,answer[0] = 1 + 1 + 2 + 2。
对于子数组 [1, 2, 2, 3, 4, 2],只保留元素 2 和 4。因此,answer[1] = 2 + 2 + 2 + 4。注意 4 被保留是因为其数值大于出现其他出现次数相同的元素(3 和 1)。
对于子数组 [2, 2, 3, 4, 2, 3],只保留元素 2 和 3。因此,answer[2] = 2 + 2 + 2 + 3 + 3。
示例 2:
输入:nums = [3,8,7,8,7,5], k = 2, x = 2
输出:[11,15,15,15,12]
解释:
由于 k == x,answer[i] 等于子数组 nums[i..i + k - 1] 的总和。
说明:
- nums.length == n
- 1 <= n <= 10^5
- 1 <= nums[i] <= 10^9
- 1 <= x <= k <= nums.length
思路
//todo
- 295.数据流的中位数
- 480.滑动窗口中位数
- 3013.将数组分成最小总代价的子数组 II
代码