1504.统计全1子矩形

目标

给你一个 m x n 的二进制矩阵 mat ,请你返回有多少个 子矩形 的元素全部都是 1 。

示例 1:

输入:mat = [[1,0,1],[1,1,0],[1,1,0]]
输出:13
解释:
有 6 个 1x1 的矩形。
有 2 个 1x2 的矩形。
有 3 个 2x1 的矩形。
有 1 个 2x2 的矩形。
有 1 个 3x1 的矩形。
矩形数目总共 = 6 + 2 + 3 + 1 + 1 = 13 。

示例 2:

输入:mat = [[0,1,1,0],[0,1,1,1],[1,1,1,0]]
输出:24
解释:
有 8 个 1x1 的子矩形。
有 5 个 1x2 的子矩形。
有 2 个 1x3 的子矩形。
有 4 个 2x1 的子矩形。
有 2 个 2x2 的子矩形。
有 2 个 3x1 的子矩形。
有 1 个 3x2 的子矩形。
矩形数目总共 = 8 + 5 + 2 + 4 + 2 + 2 + 1 = 24 。

说明:

  • 1 <= m, n <= 150
  • mat[i][j] 仅包含 0 或 1

思路

返回 m x n 矩阵的全 1 子矩阵个数。

枚举行的上下界,计算高度 h,将纵向的 1 压缩到一行,计算全 h 子数组的数目(参考 2348.全0子数组的数目)。

代码


/**
 * @date 2025-08-21 8:48
 */
public class NumSubmat1504 {

    public int numSubmat(int[][] mat) {
        int m = mat.length;
        int n = mat[0].length;
        int res = 0;
        for (int u = 0; u < m; u++) {
            for (int l = u; l < m; l++) {
                int h = l - u + 1;
                int[] row = new int[n];
                for (int i = u; i <= l; i++) {
                    for (int j = 0; j < n; j++) {
                        row[j] += mat[i][j];
                    }
                }
                int p = 0;
                while (p < n) {
                    if (row[p] != h) {
                        p++;
                        continue;
                    }
                    int start = p;
                    while (p < n && row[p] == h) {
                        p++;
                    }
                    int cnt = p - start;
                    res += (cnt + 1) * cnt / 2;
                }
            }
        }
        return res;
    }

}

性能

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注